izhx commited on
Commit
b4a2b8c
1 Parent(s): 01a3a78
Files changed (7) hide show
  1. README.md +2732 -0
  2. config.json +40 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +62 -0
  7. vocab.txt +0 -0
README.md CHANGED
@@ -1,3 +1,2735 @@
1
  ---
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ tags:
4
+ - gte
5
+ - mteb
6
  license: apache-2.0
7
+ language:
8
+ - en
9
+ model-index:
10
+ - name: gte-large-en-v1.5
11
+ results:
12
+ - task:
13
+ type: Classification
14
+ dataset:
15
+ type: mteb/amazon_counterfactual
16
+ name: MTEB AmazonCounterfactualClassification (en)
17
+ config: en
18
+ split: test
19
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
20
+ metrics:
21
+ - type: accuracy
22
+ value: 73.01492537313432
23
+ - type: ap
24
+ value: 35.05341696659522
25
+ - type: f1
26
+ value: 66.71270310883853
27
+ - task:
28
+ type: Classification
29
+ dataset:
30
+ type: mteb/amazon_polarity
31
+ name: MTEB AmazonPolarityClassification
32
+ config: default
33
+ split: test
34
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
35
+ metrics:
36
+ - type: accuracy
37
+ value: 93.97189999999999
38
+ - type: ap
39
+ value: 90.5952493948908
40
+ - type: f1
41
+ value: 93.95848137716877
42
+ - task:
43
+ type: Classification
44
+ dataset:
45
+ type: mteb/amazon_reviews_multi
46
+ name: MTEB AmazonReviewsClassification (en)
47
+ config: en
48
+ split: test
49
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
50
+ metrics:
51
+ - type: accuracy
52
+ value: 54.196
53
+ - type: f1
54
+ value: 53.80122334012787
55
+ - task:
56
+ type: Retrieval
57
+ dataset:
58
+ type: mteb/arguana
59
+ name: MTEB ArguAna
60
+ config: default
61
+ split: test
62
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
63
+ metrics:
64
+ - type: map_at_1
65
+ value: 47.297
66
+ - type: map_at_10
67
+ value: 64.303
68
+ - type: map_at_100
69
+ value: 64.541
70
+ - type: map_at_1000
71
+ value: 64.541
72
+ - type: map_at_3
73
+ value: 60.728
74
+ - type: map_at_5
75
+ value: 63.114000000000004
76
+ - type: mrr_at_1
77
+ value: 48.435
78
+ - type: mrr_at_10
79
+ value: 64.657
80
+ - type: mrr_at_100
81
+ value: 64.901
82
+ - type: mrr_at_1000
83
+ value: 64.901
84
+ - type: mrr_at_3
85
+ value: 61.06
86
+ - type: mrr_at_5
87
+ value: 63.514
88
+ - type: ndcg_at_1
89
+ value: 47.297
90
+ - type: ndcg_at_10
91
+ value: 72.107
92
+ - type: ndcg_at_100
93
+ value: 72.963
94
+ - type: ndcg_at_1000
95
+ value: 72.963
96
+ - type: ndcg_at_3
97
+ value: 65.063
98
+ - type: ndcg_at_5
99
+ value: 69.352
100
+ - type: precision_at_1
101
+ value: 47.297
102
+ - type: precision_at_10
103
+ value: 9.623
104
+ - type: precision_at_100
105
+ value: 0.996
106
+ - type: precision_at_1000
107
+ value: 0.1
108
+ - type: precision_at_3
109
+ value: 25.865
110
+ - type: precision_at_5
111
+ value: 17.596
112
+ - type: recall_at_1
113
+ value: 47.297
114
+ - type: recall_at_10
115
+ value: 96.23
116
+ - type: recall_at_100
117
+ value: 99.644
118
+ - type: recall_at_1000
119
+ value: 99.644
120
+ - type: recall_at_3
121
+ value: 77.596
122
+ - type: recall_at_5
123
+ value: 87.98
124
+ - task:
125
+ type: Clustering
126
+ dataset:
127
+ type: mteb/arxiv-clustering-p2p
128
+ name: MTEB ArxivClusteringP2P
129
+ config: default
130
+ split: test
131
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
132
+ metrics:
133
+ - type: v_measure
134
+ value: 48.467787861077475
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-s2s
139
+ name: MTEB ArxivClusteringS2S
140
+ config: default
141
+ split: test
142
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
143
+ metrics:
144
+ - type: v_measure
145
+ value: 43.39198391914257
146
+ - task:
147
+ type: Reranking
148
+ dataset:
149
+ type: mteb/askubuntudupquestions-reranking
150
+ name: MTEB AskUbuntuDupQuestions
151
+ config: default
152
+ split: test
153
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
+ metrics:
155
+ - type: map
156
+ value: 63.12794820591384
157
+ - type: mrr
158
+ value: 75.9331442641692
159
+ - task:
160
+ type: STS
161
+ dataset:
162
+ type: mteb/biosses-sts
163
+ name: MTEB BIOSSES
164
+ config: default
165
+ split: test
166
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
167
+ metrics:
168
+ - type: cos_sim_pearson
169
+ value: 87.85062993863319
170
+ - type: cos_sim_spearman
171
+ value: 85.39049989733459
172
+ - type: euclidean_pearson
173
+ value: 86.00222680278333
174
+ - type: euclidean_spearman
175
+ value: 85.45556162077396
176
+ - type: manhattan_pearson
177
+ value: 85.88769871785621
178
+ - type: manhattan_spearman
179
+ value: 85.11760211290839
180
+ - task:
181
+ type: Classification
182
+ dataset:
183
+ type: mteb/banking77
184
+ name: MTEB Banking77Classification
185
+ config: default
186
+ split: test
187
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
188
+ metrics:
189
+ - type: accuracy
190
+ value: 87.32792207792208
191
+ - type: f1
192
+ value: 87.29132945999555
193
+ - task:
194
+ type: Clustering
195
+ dataset:
196
+ type: mteb/biorxiv-clustering-p2p
197
+ name: MTEB BiorxivClusteringP2P
198
+ config: default
199
+ split: test
200
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
201
+ metrics:
202
+ - type: v_measure
203
+ value: 40.5779328301945
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-s2s
208
+ name: MTEB BiorxivClusteringS2S
209
+ config: default
210
+ split: test
211
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
212
+ metrics:
213
+ - type: v_measure
214
+ value: 37.94425623865118
215
+ - task:
216
+ type: Retrieval
217
+ dataset:
218
+ type: mteb/cqadupstack-android
219
+ name: MTEB CQADupstackAndroidRetrieval
220
+ config: default
221
+ split: test
222
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
223
+ metrics:
224
+ - type: map_at_1
225
+ value: 32.978
226
+ - type: map_at_10
227
+ value: 44.45
228
+ - type: map_at_100
229
+ value: 46.19
230
+ - type: map_at_1000
231
+ value: 46.303
232
+ - type: map_at_3
233
+ value: 40.849000000000004
234
+ - type: map_at_5
235
+ value: 42.55
236
+ - type: mrr_at_1
237
+ value: 40.629
238
+ - type: mrr_at_10
239
+ value: 50.848000000000006
240
+ - type: mrr_at_100
241
+ value: 51.669
242
+ - type: mrr_at_1000
243
+ value: 51.705
244
+ - type: mrr_at_3
245
+ value: 47.997
246
+ - type: mrr_at_5
247
+ value: 49.506
248
+ - type: ndcg_at_1
249
+ value: 40.629
250
+ - type: ndcg_at_10
251
+ value: 51.102000000000004
252
+ - type: ndcg_at_100
253
+ value: 57.159000000000006
254
+ - type: ndcg_at_1000
255
+ value: 58.669000000000004
256
+ - type: ndcg_at_3
257
+ value: 45.738
258
+ - type: ndcg_at_5
259
+ value: 47.632999999999996
260
+ - type: precision_at_1
261
+ value: 40.629
262
+ - type: precision_at_10
263
+ value: 9.700000000000001
264
+ - type: precision_at_100
265
+ value: 1.5970000000000002
266
+ - type: precision_at_1000
267
+ value: 0.202
268
+ - type: precision_at_3
269
+ value: 21.698
270
+ - type: precision_at_5
271
+ value: 15.393
272
+ - type: recall_at_1
273
+ value: 32.978
274
+ - type: recall_at_10
275
+ value: 63.711
276
+ - type: recall_at_100
277
+ value: 88.39399999999999
278
+ - type: recall_at_1000
279
+ value: 97.513
280
+ - type: recall_at_3
281
+ value: 48.025
282
+ - type: recall_at_5
283
+ value: 53.52
284
+ - task:
285
+ type: Retrieval
286
+ dataset:
287
+ type: mteb/cqadupstack-english
288
+ name: MTEB CQADupstackEnglishRetrieval
289
+ config: default
290
+ split: test
291
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 30.767
295
+ - type: map_at_10
296
+ value: 42.195
297
+ - type: map_at_100
298
+ value: 43.541999999999994
299
+ - type: map_at_1000
300
+ value: 43.673
301
+ - type: map_at_3
302
+ value: 38.561
303
+ - type: map_at_5
304
+ value: 40.532000000000004
305
+ - type: mrr_at_1
306
+ value: 38.79
307
+ - type: mrr_at_10
308
+ value: 48.021
309
+ - type: mrr_at_100
310
+ value: 48.735
311
+ - type: mrr_at_1000
312
+ value: 48.776
313
+ - type: mrr_at_3
314
+ value: 45.594
315
+ - type: mrr_at_5
316
+ value: 46.986
317
+ - type: ndcg_at_1
318
+ value: 38.79
319
+ - type: ndcg_at_10
320
+ value: 48.468
321
+ - type: ndcg_at_100
322
+ value: 53.037
323
+ - type: ndcg_at_1000
324
+ value: 55.001999999999995
325
+ - type: ndcg_at_3
326
+ value: 43.409
327
+ - type: ndcg_at_5
328
+ value: 45.654
329
+ - type: precision_at_1
330
+ value: 38.79
331
+ - type: precision_at_10
332
+ value: 9.452
333
+ - type: precision_at_100
334
+ value: 1.518
335
+ - type: precision_at_1000
336
+ value: 0.201
337
+ - type: precision_at_3
338
+ value: 21.21
339
+ - type: precision_at_5
340
+ value: 15.171999999999999
341
+ - type: recall_at_1
342
+ value: 30.767
343
+ - type: recall_at_10
344
+ value: 60.118
345
+ - type: recall_at_100
346
+ value: 79.271
347
+ - type: recall_at_1000
348
+ value: 91.43299999999999
349
+ - type: recall_at_3
350
+ value: 45.36
351
+ - type: recall_at_5
352
+ value: 51.705
353
+ - task:
354
+ type: Retrieval
355
+ dataset:
356
+ type: mteb/cqadupstack-gaming
357
+ name: MTEB CQADupstackGamingRetrieval
358
+ config: default
359
+ split: test
360
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 40.007
364
+ - type: map_at_10
365
+ value: 53.529
366
+ - type: map_at_100
367
+ value: 54.602
368
+ - type: map_at_1000
369
+ value: 54.647
370
+ - type: map_at_3
371
+ value: 49.951
372
+ - type: map_at_5
373
+ value: 52.066
374
+ - type: mrr_at_1
375
+ value: 45.705
376
+ - type: mrr_at_10
377
+ value: 56.745000000000005
378
+ - type: mrr_at_100
379
+ value: 57.43899999999999
380
+ - type: mrr_at_1000
381
+ value: 57.462999999999994
382
+ - type: mrr_at_3
383
+ value: 54.25299999999999
384
+ - type: mrr_at_5
385
+ value: 55.842000000000006
386
+ - type: ndcg_at_1
387
+ value: 45.705
388
+ - type: ndcg_at_10
389
+ value: 59.809
390
+ - type: ndcg_at_100
391
+ value: 63.837999999999994
392
+ - type: ndcg_at_1000
393
+ value: 64.729
394
+ - type: ndcg_at_3
395
+ value: 53.994
396
+ - type: ndcg_at_5
397
+ value: 57.028
398
+ - type: precision_at_1
399
+ value: 45.705
400
+ - type: precision_at_10
401
+ value: 9.762
402
+ - type: precision_at_100
403
+ value: 1.275
404
+ - type: precision_at_1000
405
+ value: 0.13899999999999998
406
+ - type: precision_at_3
407
+ value: 24.368000000000002
408
+ - type: precision_at_5
409
+ value: 16.84
410
+ - type: recall_at_1
411
+ value: 40.007
412
+ - type: recall_at_10
413
+ value: 75.017
414
+ - type: recall_at_100
415
+ value: 91.99000000000001
416
+ - type: recall_at_1000
417
+ value: 98.265
418
+ - type: recall_at_3
419
+ value: 59.704
420
+ - type: recall_at_5
421
+ value: 67.109
422
+ - task:
423
+ type: Retrieval
424
+ dataset:
425
+ type: mteb/cqadupstack-gis
426
+ name: MTEB CQADupstackGisRetrieval
427
+ config: default
428
+ split: test
429
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 26.639000000000003
433
+ - type: map_at_10
434
+ value: 35.926
435
+ - type: map_at_100
436
+ value: 37.126999999999995
437
+ - type: map_at_1000
438
+ value: 37.202
439
+ - type: map_at_3
440
+ value: 32.989000000000004
441
+ - type: map_at_5
442
+ value: 34.465
443
+ - type: mrr_at_1
444
+ value: 28.475
445
+ - type: mrr_at_10
446
+ value: 37.7
447
+ - type: mrr_at_100
448
+ value: 38.753
449
+ - type: mrr_at_1000
450
+ value: 38.807
451
+ - type: mrr_at_3
452
+ value: 35.066
453
+ - type: mrr_at_5
454
+ value: 36.512
455
+ - type: ndcg_at_1
456
+ value: 28.475
457
+ - type: ndcg_at_10
458
+ value: 41.245
459
+ - type: ndcg_at_100
460
+ value: 46.814
461
+ - type: ndcg_at_1000
462
+ value: 48.571
463
+ - type: ndcg_at_3
464
+ value: 35.528999999999996
465
+ - type: ndcg_at_5
466
+ value: 38.066
467
+ - type: precision_at_1
468
+ value: 28.475
469
+ - type: precision_at_10
470
+ value: 6.497
471
+ - type: precision_at_100
472
+ value: 0.9650000000000001
473
+ - type: precision_at_1000
474
+ value: 0.11499999999999999
475
+ - type: precision_at_3
476
+ value: 15.065999999999999
477
+ - type: precision_at_5
478
+ value: 10.599
479
+ - type: recall_at_1
480
+ value: 26.639000000000003
481
+ - type: recall_at_10
482
+ value: 55.759
483
+ - type: recall_at_100
484
+ value: 80.913
485
+ - type: recall_at_1000
486
+ value: 93.929
487
+ - type: recall_at_3
488
+ value: 40.454
489
+ - type: recall_at_5
490
+ value: 46.439
491
+ - task:
492
+ type: Retrieval
493
+ dataset:
494
+ type: mteb/cqadupstack-mathematica
495
+ name: MTEB CQADupstackMathematicaRetrieval
496
+ config: default
497
+ split: test
498
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
499
+ metrics:
500
+ - type: map_at_1
501
+ value: 15.767999999999999
502
+ - type: map_at_10
503
+ value: 24.811
504
+ - type: map_at_100
505
+ value: 26.064999999999998
506
+ - type: map_at_1000
507
+ value: 26.186999999999998
508
+ - type: map_at_3
509
+ value: 21.736
510
+ - type: map_at_5
511
+ value: 23.283
512
+ - type: mrr_at_1
513
+ value: 19.527
514
+ - type: mrr_at_10
515
+ value: 29.179
516
+ - type: mrr_at_100
517
+ value: 30.153999999999996
518
+ - type: mrr_at_1000
519
+ value: 30.215999999999998
520
+ - type: mrr_at_3
521
+ value: 26.223000000000003
522
+ - type: mrr_at_5
523
+ value: 27.733999999999998
524
+ - type: ndcg_at_1
525
+ value: 19.527
526
+ - type: ndcg_at_10
527
+ value: 30.786
528
+ - type: ndcg_at_100
529
+ value: 36.644
530
+ - type: ndcg_at_1000
531
+ value: 39.440999999999995
532
+ - type: ndcg_at_3
533
+ value: 24.958
534
+ - type: ndcg_at_5
535
+ value: 27.392
536
+ - type: precision_at_1
537
+ value: 19.527
538
+ - type: precision_at_10
539
+ value: 5.995
540
+ - type: precision_at_100
541
+ value: 1.03
542
+ - type: precision_at_1000
543
+ value: 0.14100000000000001
544
+ - type: precision_at_3
545
+ value: 12.520999999999999
546
+ - type: precision_at_5
547
+ value: 9.129
548
+ - type: recall_at_1
549
+ value: 15.767999999999999
550
+ - type: recall_at_10
551
+ value: 44.824000000000005
552
+ - type: recall_at_100
553
+ value: 70.186
554
+ - type: recall_at_1000
555
+ value: 89.934
556
+ - type: recall_at_3
557
+ value: 28.607
558
+ - type: recall_at_5
559
+ value: 34.836
560
+ - task:
561
+ type: Retrieval
562
+ dataset:
563
+ type: mteb/cqadupstack-physics
564
+ name: MTEB CQADupstackPhysicsRetrieval
565
+ config: default
566
+ split: test
567
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 31.952
571
+ - type: map_at_10
572
+ value: 44.438
573
+ - type: map_at_100
574
+ value: 45.778
575
+ - type: map_at_1000
576
+ value: 45.883
577
+ - type: map_at_3
578
+ value: 41.044000000000004
579
+ - type: map_at_5
580
+ value: 42.986000000000004
581
+ - type: mrr_at_1
582
+ value: 39.172000000000004
583
+ - type: mrr_at_10
584
+ value: 49.76
585
+ - type: mrr_at_100
586
+ value: 50.583999999999996
587
+ - type: mrr_at_1000
588
+ value: 50.621
589
+ - type: mrr_at_3
590
+ value: 47.353
591
+ - type: mrr_at_5
592
+ value: 48.739
593
+ - type: ndcg_at_1
594
+ value: 39.172000000000004
595
+ - type: ndcg_at_10
596
+ value: 50.760000000000005
597
+ - type: ndcg_at_100
598
+ value: 56.084
599
+ - type: ndcg_at_1000
600
+ value: 57.865
601
+ - type: ndcg_at_3
602
+ value: 45.663
603
+ - type: ndcg_at_5
604
+ value: 48.178
605
+ - type: precision_at_1
606
+ value: 39.172000000000004
607
+ - type: precision_at_10
608
+ value: 9.22
609
+ - type: precision_at_100
610
+ value: 1.387
611
+ - type: precision_at_1000
612
+ value: 0.17099999999999999
613
+ - type: precision_at_3
614
+ value: 21.976000000000003
615
+ - type: precision_at_5
616
+ value: 15.457
617
+ - type: recall_at_1
618
+ value: 31.952
619
+ - type: recall_at_10
620
+ value: 63.900999999999996
621
+ - type: recall_at_100
622
+ value: 85.676
623
+ - type: recall_at_1000
624
+ value: 97.03699999999999
625
+ - type: recall_at_3
626
+ value: 49.781
627
+ - type: recall_at_5
628
+ value: 56.330000000000005
629
+ - task:
630
+ type: Retrieval
631
+ dataset:
632
+ type: mteb/cqadupstack-programmers
633
+ name: MTEB CQADupstackProgrammersRetrieval
634
+ config: default
635
+ split: test
636
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
637
+ metrics:
638
+ - type: map_at_1
639
+ value: 25.332
640
+ - type: map_at_10
641
+ value: 36.874
642
+ - type: map_at_100
643
+ value: 38.340999999999994
644
+ - type: map_at_1000
645
+ value: 38.452
646
+ - type: map_at_3
647
+ value: 33.068
648
+ - type: map_at_5
649
+ value: 35.324
650
+ - type: mrr_at_1
651
+ value: 30.822
652
+ - type: mrr_at_10
653
+ value: 41.641
654
+ - type: mrr_at_100
655
+ value: 42.519
656
+ - type: mrr_at_1000
657
+ value: 42.573
658
+ - type: mrr_at_3
659
+ value: 38.413000000000004
660
+ - type: mrr_at_5
661
+ value: 40.542
662
+ - type: ndcg_at_1
663
+ value: 30.822
664
+ - type: ndcg_at_10
665
+ value: 43.414
666
+ - type: ndcg_at_100
667
+ value: 49.196
668
+ - type: ndcg_at_1000
669
+ value: 51.237
670
+ - type: ndcg_at_3
671
+ value: 37.230000000000004
672
+ - type: ndcg_at_5
673
+ value: 40.405
674
+ - type: precision_at_1
675
+ value: 30.822
676
+ - type: precision_at_10
677
+ value: 8.379
678
+ - type: precision_at_100
679
+ value: 1.315
680
+ - type: precision_at_1000
681
+ value: 0.168
682
+ - type: precision_at_3
683
+ value: 18.417
684
+ - type: precision_at_5
685
+ value: 13.744
686
+ - type: recall_at_1
687
+ value: 25.332
688
+ - type: recall_at_10
689
+ value: 57.774
690
+ - type: recall_at_100
691
+ value: 82.071
692
+ - type: recall_at_1000
693
+ value: 95.60600000000001
694
+ - type: recall_at_3
695
+ value: 40.722
696
+ - type: recall_at_5
697
+ value: 48.754999999999995
698
+ - task:
699
+ type: Retrieval
700
+ dataset:
701
+ type: mteb/cqadupstack
702
+ name: MTEB CQADupstackRetrieval
703
+ config: default
704
+ split: test
705
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
706
+ metrics:
707
+ - type: map_at_1
708
+ value: 25.91033333333334
709
+ - type: map_at_10
710
+ value: 36.23225000000001
711
+ - type: map_at_100
712
+ value: 37.55766666666667
713
+ - type: map_at_1000
714
+ value: 37.672583333333336
715
+ - type: map_at_3
716
+ value: 32.95666666666667
717
+ - type: map_at_5
718
+ value: 34.73375
719
+ - type: mrr_at_1
720
+ value: 30.634
721
+ - type: mrr_at_10
722
+ value: 40.19449999999999
723
+ - type: mrr_at_100
724
+ value: 41.099250000000005
725
+ - type: mrr_at_1000
726
+ value: 41.15091666666667
727
+ - type: mrr_at_3
728
+ value: 37.4615
729
+ - type: mrr_at_5
730
+ value: 39.00216666666667
731
+ - type: ndcg_at_1
732
+ value: 30.634
733
+ - type: ndcg_at_10
734
+ value: 42.162166666666664
735
+ - type: ndcg_at_100
736
+ value: 47.60708333333333
737
+ - type: ndcg_at_1000
738
+ value: 49.68616666666666
739
+ - type: ndcg_at_3
740
+ value: 36.60316666666666
741
+ - type: ndcg_at_5
742
+ value: 39.15616666666668
743
+ - type: precision_at_1
744
+ value: 30.634
745
+ - type: precision_at_10
746
+ value: 7.6193333333333335
747
+ - type: precision_at_100
748
+ value: 1.2198333333333333
749
+ - type: precision_at_1000
750
+ value: 0.15975000000000003
751
+ - type: precision_at_3
752
+ value: 17.087
753
+ - type: precision_at_5
754
+ value: 12.298333333333334
755
+ - type: recall_at_1
756
+ value: 25.91033333333334
757
+ - type: recall_at_10
758
+ value: 55.67300000000001
759
+ - type: recall_at_100
760
+ value: 79.20608333333334
761
+ - type: recall_at_1000
762
+ value: 93.34866666666667
763
+ - type: recall_at_3
764
+ value: 40.34858333333333
765
+ - type: recall_at_5
766
+ value: 46.834083333333325
767
+ - task:
768
+ type: Retrieval
769
+ dataset:
770
+ type: mteb/cqadupstack-stats
771
+ name: MTEB CQADupstackStatsRetrieval
772
+ config: default
773
+ split: test
774
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
775
+ metrics:
776
+ - type: map_at_1
777
+ value: 25.006
778
+ - type: map_at_10
779
+ value: 32.177
780
+ - type: map_at_100
781
+ value: 33.324999999999996
782
+ - type: map_at_1000
783
+ value: 33.419
784
+ - type: map_at_3
785
+ value: 29.952
786
+ - type: map_at_5
787
+ value: 31.095
788
+ - type: mrr_at_1
789
+ value: 28.066999999999997
790
+ - type: mrr_at_10
791
+ value: 34.995
792
+ - type: mrr_at_100
793
+ value: 35.978
794
+ - type: mrr_at_1000
795
+ value: 36.042
796
+ - type: mrr_at_3
797
+ value: 33.103
798
+ - type: mrr_at_5
799
+ value: 34.001
800
+ - type: ndcg_at_1
801
+ value: 28.066999999999997
802
+ - type: ndcg_at_10
803
+ value: 36.481
804
+ - type: ndcg_at_100
805
+ value: 42.022999999999996
806
+ - type: ndcg_at_1000
807
+ value: 44.377
808
+ - type: ndcg_at_3
809
+ value: 32.394
810
+ - type: ndcg_at_5
811
+ value: 34.108
812
+ - type: precision_at_1
813
+ value: 28.066999999999997
814
+ - type: precision_at_10
815
+ value: 5.736
816
+ - type: precision_at_100
817
+ value: 0.9259999999999999
818
+ - type: precision_at_1000
819
+ value: 0.12
820
+ - type: precision_at_3
821
+ value: 13.804
822
+ - type: precision_at_5
823
+ value: 9.508999999999999
824
+ - type: recall_at_1
825
+ value: 25.006
826
+ - type: recall_at_10
827
+ value: 46.972
828
+ - type: recall_at_100
829
+ value: 72.138
830
+ - type: recall_at_1000
831
+ value: 89.479
832
+ - type: recall_at_3
833
+ value: 35.793
834
+ - type: recall_at_5
835
+ value: 39.947
836
+ - task:
837
+ type: Retrieval
838
+ dataset:
839
+ type: mteb/cqadupstack-tex
840
+ name: MTEB CQADupstackTexRetrieval
841
+ config: default
842
+ split: test
843
+ revision: 46989137a86843e03a6195de44b09deda022eec7
844
+ metrics:
845
+ - type: map_at_1
846
+ value: 16.07
847
+ - type: map_at_10
848
+ value: 24.447
849
+ - type: map_at_100
850
+ value: 25.685999999999996
851
+ - type: map_at_1000
852
+ value: 25.813999999999997
853
+ - type: map_at_3
854
+ value: 21.634
855
+ - type: map_at_5
856
+ value: 23.133
857
+ - type: mrr_at_1
858
+ value: 19.580000000000002
859
+ - type: mrr_at_10
860
+ value: 28.127999999999997
861
+ - type: mrr_at_100
862
+ value: 29.119
863
+ - type: mrr_at_1000
864
+ value: 29.192
865
+ - type: mrr_at_3
866
+ value: 25.509999999999998
867
+ - type: mrr_at_5
868
+ value: 26.878
869
+ - type: ndcg_at_1
870
+ value: 19.580000000000002
871
+ - type: ndcg_at_10
872
+ value: 29.804000000000002
873
+ - type: ndcg_at_100
874
+ value: 35.555
875
+ - type: ndcg_at_1000
876
+ value: 38.421
877
+ - type: ndcg_at_3
878
+ value: 24.654999999999998
879
+ - type: ndcg_at_5
880
+ value: 26.881
881
+ - type: precision_at_1
882
+ value: 19.580000000000002
883
+ - type: precision_at_10
884
+ value: 5.736
885
+ - type: precision_at_100
886
+ value: 1.005
887
+ - type: precision_at_1000
888
+ value: 0.145
889
+ - type: precision_at_3
890
+ value: 12.033000000000001
891
+ - type: precision_at_5
892
+ value: 8.871
893
+ - type: recall_at_1
894
+ value: 16.07
895
+ - type: recall_at_10
896
+ value: 42.364000000000004
897
+ - type: recall_at_100
898
+ value: 68.01899999999999
899
+ - type: recall_at_1000
900
+ value: 88.122
901
+ - type: recall_at_3
902
+ value: 27.846
903
+ - type: recall_at_5
904
+ value: 33.638
905
+ - task:
906
+ type: Retrieval
907
+ dataset:
908
+ type: mteb/cqadupstack-unix
909
+ name: MTEB CQADupstackUnixRetrieval
910
+ config: default
911
+ split: test
912
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
913
+ metrics:
914
+ - type: map_at_1
915
+ value: 26.365
916
+ - type: map_at_10
917
+ value: 36.591
918
+ - type: map_at_100
919
+ value: 37.730000000000004
920
+ - type: map_at_1000
921
+ value: 37.84
922
+ - type: map_at_3
923
+ value: 33.403
924
+ - type: map_at_5
925
+ value: 35.272999999999996
926
+ - type: mrr_at_1
927
+ value: 30.503999999999998
928
+ - type: mrr_at_10
929
+ value: 39.940999999999995
930
+ - type: mrr_at_100
931
+ value: 40.818
932
+ - type: mrr_at_1000
933
+ value: 40.876000000000005
934
+ - type: mrr_at_3
935
+ value: 37.065
936
+ - type: mrr_at_5
937
+ value: 38.814
938
+ - type: ndcg_at_1
939
+ value: 30.503999999999998
940
+ - type: ndcg_at_10
941
+ value: 42.185
942
+ - type: ndcg_at_100
943
+ value: 47.416000000000004
944
+ - type: ndcg_at_1000
945
+ value: 49.705
946
+ - type: ndcg_at_3
947
+ value: 36.568
948
+ - type: ndcg_at_5
949
+ value: 39.416000000000004
950
+ - type: precision_at_1
951
+ value: 30.503999999999998
952
+ - type: precision_at_10
953
+ value: 7.276000000000001
954
+ - type: precision_at_100
955
+ value: 1.118
956
+ - type: precision_at_1000
957
+ value: 0.14300000000000002
958
+ - type: precision_at_3
959
+ value: 16.729
960
+ - type: precision_at_5
961
+ value: 12.107999999999999
962
+ - type: recall_at_1
963
+ value: 26.365
964
+ - type: recall_at_10
965
+ value: 55.616
966
+ - type: recall_at_100
967
+ value: 78.129
968
+ - type: recall_at_1000
969
+ value: 93.95599999999999
970
+ - type: recall_at_3
971
+ value: 40.686
972
+ - type: recall_at_5
973
+ value: 47.668
974
+ - task:
975
+ type: Retrieval
976
+ dataset:
977
+ type: mteb/cqadupstack-webmasters
978
+ name: MTEB CQADupstackWebmastersRetrieval
979
+ config: default
980
+ split: test
981
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
982
+ metrics:
983
+ - type: map_at_1
984
+ value: 22.750999999999998
985
+ - type: map_at_10
986
+ value: 33.446
987
+ - type: map_at_100
988
+ value: 35.235
989
+ - type: map_at_1000
990
+ value: 35.478
991
+ - type: map_at_3
992
+ value: 29.358
993
+ - type: map_at_5
994
+ value: 31.525
995
+ - type: mrr_at_1
996
+ value: 27.668
997
+ - type: mrr_at_10
998
+ value: 37.694
999
+ - type: mrr_at_100
1000
+ value: 38.732
1001
+ - type: mrr_at_1000
1002
+ value: 38.779
1003
+ - type: mrr_at_3
1004
+ value: 34.223
1005
+ - type: mrr_at_5
1006
+ value: 36.08
1007
+ - type: ndcg_at_1
1008
+ value: 27.668
1009
+ - type: ndcg_at_10
1010
+ value: 40.557
1011
+ - type: ndcg_at_100
1012
+ value: 46.605999999999995
1013
+ - type: ndcg_at_1000
1014
+ value: 48.917
1015
+ - type: ndcg_at_3
1016
+ value: 33.677
1017
+ - type: ndcg_at_5
1018
+ value: 36.85
1019
+ - type: precision_at_1
1020
+ value: 27.668
1021
+ - type: precision_at_10
1022
+ value: 8.3
1023
+ - type: precision_at_100
1024
+ value: 1.6260000000000001
1025
+ - type: precision_at_1000
1026
+ value: 0.253
1027
+ - type: precision_at_3
1028
+ value: 16.008
1029
+ - type: precision_at_5
1030
+ value: 12.292
1031
+ - type: recall_at_1
1032
+ value: 22.750999999999998
1033
+ - type: recall_at_10
1034
+ value: 55.643
1035
+ - type: recall_at_100
1036
+ value: 82.151
1037
+ - type: recall_at_1000
1038
+ value: 95.963
1039
+ - type: recall_at_3
1040
+ value: 36.623
1041
+ - type: recall_at_5
1042
+ value: 44.708
1043
+ - task:
1044
+ type: Retrieval
1045
+ dataset:
1046
+ type: mteb/cqadupstack-wordpress
1047
+ name: MTEB CQADupstackWordpressRetrieval
1048
+ config: default
1049
+ split: test
1050
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 17.288999999999998
1054
+ - type: map_at_10
1055
+ value: 25.903
1056
+ - type: map_at_100
1057
+ value: 27.071
1058
+ - type: map_at_1000
1059
+ value: 27.173000000000002
1060
+ - type: map_at_3
1061
+ value: 22.935
1062
+ - type: map_at_5
1063
+ value: 24.573
1064
+ - type: mrr_at_1
1065
+ value: 18.669
1066
+ - type: mrr_at_10
1067
+ value: 27.682000000000002
1068
+ - type: mrr_at_100
1069
+ value: 28.691
1070
+ - type: mrr_at_1000
1071
+ value: 28.761
1072
+ - type: mrr_at_3
1073
+ value: 24.738
1074
+ - type: mrr_at_5
1075
+ value: 26.392
1076
+ - type: ndcg_at_1
1077
+ value: 18.669
1078
+ - type: ndcg_at_10
1079
+ value: 31.335
1080
+ - type: ndcg_at_100
1081
+ value: 36.913000000000004
1082
+ - type: ndcg_at_1000
1083
+ value: 39.300000000000004
1084
+ - type: ndcg_at_3
1085
+ value: 25.423000000000002
1086
+ - type: ndcg_at_5
1087
+ value: 28.262999999999998
1088
+ - type: precision_at_1
1089
+ value: 18.669
1090
+ - type: precision_at_10
1091
+ value: 5.379
1092
+ - type: precision_at_100
1093
+ value: 0.876
1094
+ - type: precision_at_1000
1095
+ value: 0.11900000000000001
1096
+ - type: precision_at_3
1097
+ value: 11.214
1098
+ - type: precision_at_5
1099
+ value: 8.466
1100
+ - type: recall_at_1
1101
+ value: 17.288999999999998
1102
+ - type: recall_at_10
1103
+ value: 46.377
1104
+ - type: recall_at_100
1105
+ value: 71.53500000000001
1106
+ - type: recall_at_1000
1107
+ value: 88.947
1108
+ - type: recall_at_3
1109
+ value: 30.581999999999997
1110
+ - type: recall_at_5
1111
+ value: 37.354
1112
+ - task:
1113
+ type: Retrieval
1114
+ dataset:
1115
+ type: mteb/climate-fever
1116
+ name: MTEB ClimateFEVER
1117
+ config: default
1118
+ split: test
1119
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1120
+ metrics:
1121
+ - type: map_at_1
1122
+ value: 21.795
1123
+ - type: map_at_10
1124
+ value: 37.614999999999995
1125
+ - type: map_at_100
1126
+ value: 40.037
1127
+ - type: map_at_1000
1128
+ value: 40.184999999999995
1129
+ - type: map_at_3
1130
+ value: 32.221
1131
+ - type: map_at_5
1132
+ value: 35.154999999999994
1133
+ - type: mrr_at_1
1134
+ value: 50.358000000000004
1135
+ - type: mrr_at_10
1136
+ value: 62.129
1137
+ - type: mrr_at_100
1138
+ value: 62.613
1139
+ - type: mrr_at_1000
1140
+ value: 62.62
1141
+ - type: mrr_at_3
1142
+ value: 59.272999999999996
1143
+ - type: mrr_at_5
1144
+ value: 61.138999999999996
1145
+ - type: ndcg_at_1
1146
+ value: 50.358000000000004
1147
+ - type: ndcg_at_10
1148
+ value: 48.362
1149
+ - type: ndcg_at_100
1150
+ value: 55.932
1151
+ - type: ndcg_at_1000
1152
+ value: 58.062999999999995
1153
+ - type: ndcg_at_3
1154
+ value: 42.111
1155
+ - type: ndcg_at_5
1156
+ value: 44.063
1157
+ - type: precision_at_1
1158
+ value: 50.358000000000004
1159
+ - type: precision_at_10
1160
+ value: 14.677999999999999
1161
+ - type: precision_at_100
1162
+ value: 2.2950000000000004
1163
+ - type: precision_at_1000
1164
+ value: 0.271
1165
+ - type: precision_at_3
1166
+ value: 31.77
1167
+ - type: precision_at_5
1168
+ value: 23.375
1169
+ - type: recall_at_1
1170
+ value: 21.795
1171
+ - type: recall_at_10
1172
+ value: 53.846000000000004
1173
+ - type: recall_at_100
1174
+ value: 78.952
1175
+ - type: recall_at_1000
1176
+ value: 90.41900000000001
1177
+ - type: recall_at_3
1178
+ value: 37.257
1179
+ - type: recall_at_5
1180
+ value: 44.661
1181
+ - task:
1182
+ type: Retrieval
1183
+ dataset:
1184
+ type: mteb/dbpedia
1185
+ name: MTEB DBPedia
1186
+ config: default
1187
+ split: test
1188
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1189
+ metrics:
1190
+ - type: map_at_1
1191
+ value: 9.728
1192
+ - type: map_at_10
1193
+ value: 22.691
1194
+ - type: map_at_100
1195
+ value: 31.734
1196
+ - type: map_at_1000
1197
+ value: 33.464
1198
+ - type: map_at_3
1199
+ value: 16.273
1200
+ - type: map_at_5
1201
+ value: 19.016
1202
+ - type: mrr_at_1
1203
+ value: 73.25
1204
+ - type: mrr_at_10
1205
+ value: 80.782
1206
+ - type: mrr_at_100
1207
+ value: 81.01899999999999
1208
+ - type: mrr_at_1000
1209
+ value: 81.021
1210
+ - type: mrr_at_3
1211
+ value: 79.583
1212
+ - type: mrr_at_5
1213
+ value: 80.146
1214
+ - type: ndcg_at_1
1215
+ value: 59.62499999999999
1216
+ - type: ndcg_at_10
1217
+ value: 46.304
1218
+ - type: ndcg_at_100
1219
+ value: 51.23
1220
+ - type: ndcg_at_1000
1221
+ value: 58.048
1222
+ - type: ndcg_at_3
1223
+ value: 51.541000000000004
1224
+ - type: ndcg_at_5
1225
+ value: 48.635
1226
+ - type: precision_at_1
1227
+ value: 73.25
1228
+ - type: precision_at_10
1229
+ value: 36.375
1230
+ - type: precision_at_100
1231
+ value: 11.53
1232
+ - type: precision_at_1000
1233
+ value: 2.23
1234
+ - type: precision_at_3
1235
+ value: 55.583000000000006
1236
+ - type: precision_at_5
1237
+ value: 47.15
1238
+ - type: recall_at_1
1239
+ value: 9.728
1240
+ - type: recall_at_10
1241
+ value: 28.793999999999997
1242
+ - type: recall_at_100
1243
+ value: 57.885
1244
+ - type: recall_at_1000
1245
+ value: 78.759
1246
+ - type: recall_at_3
1247
+ value: 17.79
1248
+ - type: recall_at_5
1249
+ value: 21.733
1250
+ - task:
1251
+ type: Classification
1252
+ dataset:
1253
+ type: mteb/emotion
1254
+ name: MTEB EmotionClassification
1255
+ config: default
1256
+ split: test
1257
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1258
+ metrics:
1259
+ - type: accuracy
1260
+ value: 46.775
1261
+ - type: f1
1262
+ value: 41.89794273264891
1263
+ - task:
1264
+ type: Retrieval
1265
+ dataset:
1266
+ type: mteb/fever
1267
+ name: MTEB FEVER
1268
+ config: default
1269
+ split: test
1270
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1271
+ metrics:
1272
+ - type: map_at_1
1273
+ value: 85.378
1274
+ - type: map_at_10
1275
+ value: 91.51
1276
+ - type: map_at_100
1277
+ value: 91.666
1278
+ - type: map_at_1000
1279
+ value: 91.676
1280
+ - type: map_at_3
1281
+ value: 90.757
1282
+ - type: map_at_5
1283
+ value: 91.277
1284
+ - type: mrr_at_1
1285
+ value: 91.839
1286
+ - type: mrr_at_10
1287
+ value: 95.49
1288
+ - type: mrr_at_100
1289
+ value: 95.493
1290
+ - type: mrr_at_1000
1291
+ value: 95.493
1292
+ - type: mrr_at_3
1293
+ value: 95.345
1294
+ - type: mrr_at_5
1295
+ value: 95.47200000000001
1296
+ - type: ndcg_at_1
1297
+ value: 91.839
1298
+ - type: ndcg_at_10
1299
+ value: 93.806
1300
+ - type: ndcg_at_100
1301
+ value: 94.255
1302
+ - type: ndcg_at_1000
1303
+ value: 94.399
1304
+ - type: ndcg_at_3
1305
+ value: 93.027
1306
+ - type: ndcg_at_5
1307
+ value: 93.51
1308
+ - type: precision_at_1
1309
+ value: 91.839
1310
+ - type: precision_at_10
1311
+ value: 10.93
1312
+ - type: precision_at_100
1313
+ value: 1.1400000000000001
1314
+ - type: precision_at_1000
1315
+ value: 0.117
1316
+ - type: precision_at_3
1317
+ value: 34.873
1318
+ - type: precision_at_5
1319
+ value: 21.44
1320
+ - type: recall_at_1
1321
+ value: 85.378
1322
+ - type: recall_at_10
1323
+ value: 96.814
1324
+ - type: recall_at_100
1325
+ value: 98.386
1326
+ - type: recall_at_1000
1327
+ value: 99.21600000000001
1328
+ - type: recall_at_3
1329
+ value: 94.643
1330
+ - type: recall_at_5
1331
+ value: 95.976
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: mteb/fiqa
1336
+ name: MTEB FiQA2018
1337
+ config: default
1338
+ split: test
1339
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1340
+ metrics:
1341
+ - type: map_at_1
1342
+ value: 32.190000000000005
1343
+ - type: map_at_10
1344
+ value: 53.605000000000004
1345
+ - type: map_at_100
1346
+ value: 55.550999999999995
1347
+ - type: map_at_1000
1348
+ value: 55.665
1349
+ - type: map_at_3
1350
+ value: 46.62
1351
+ - type: map_at_5
1352
+ value: 50.517999999999994
1353
+ - type: mrr_at_1
1354
+ value: 60.34
1355
+ - type: mrr_at_10
1356
+ value: 70.775
1357
+ - type: mrr_at_100
1358
+ value: 71.238
1359
+ - type: mrr_at_1000
1360
+ value: 71.244
1361
+ - type: mrr_at_3
1362
+ value: 68.72399999999999
1363
+ - type: mrr_at_5
1364
+ value: 69.959
1365
+ - type: ndcg_at_1
1366
+ value: 60.34
1367
+ - type: ndcg_at_10
1368
+ value: 63.226000000000006
1369
+ - type: ndcg_at_100
1370
+ value: 68.60300000000001
1371
+ - type: ndcg_at_1000
1372
+ value: 69.901
1373
+ - type: ndcg_at_3
1374
+ value: 58.048
1375
+ - type: ndcg_at_5
1376
+ value: 59.789
1377
+ - type: precision_at_1
1378
+ value: 60.34
1379
+ - type: precision_at_10
1380
+ value: 17.130000000000003
1381
+ - type: precision_at_100
1382
+ value: 2.29
1383
+ - type: precision_at_1000
1384
+ value: 0.256
1385
+ - type: precision_at_3
1386
+ value: 38.323
1387
+ - type: precision_at_5
1388
+ value: 27.87
1389
+ - type: recall_at_1
1390
+ value: 32.190000000000005
1391
+ - type: recall_at_10
1392
+ value: 73.041
1393
+ - type: recall_at_100
1394
+ value: 91.31
1395
+ - type: recall_at_1000
1396
+ value: 98.104
1397
+ - type: recall_at_3
1398
+ value: 53.70399999999999
1399
+ - type: recall_at_5
1400
+ value: 62.358999999999995
1401
+ - task:
1402
+ type: Retrieval
1403
+ dataset:
1404
+ type: mteb/hotpotqa
1405
+ name: MTEB HotpotQA
1406
+ config: default
1407
+ split: test
1408
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1409
+ metrics:
1410
+ - type: map_at_1
1411
+ value: 43.511
1412
+ - type: map_at_10
1413
+ value: 58.15
1414
+ - type: map_at_100
1415
+ value: 58.95399999999999
1416
+ - type: map_at_1000
1417
+ value: 59.018
1418
+ - type: map_at_3
1419
+ value: 55.31700000000001
1420
+ - type: map_at_5
1421
+ value: 57.04900000000001
1422
+ - type: mrr_at_1
1423
+ value: 87.022
1424
+ - type: mrr_at_10
1425
+ value: 91.32000000000001
1426
+ - type: mrr_at_100
1427
+ value: 91.401
1428
+ - type: mrr_at_1000
1429
+ value: 91.403
1430
+ - type: mrr_at_3
1431
+ value: 90.77
1432
+ - type: mrr_at_5
1433
+ value: 91.156
1434
+ - type: ndcg_at_1
1435
+ value: 87.022
1436
+ - type: ndcg_at_10
1437
+ value: 68.183
1438
+ - type: ndcg_at_100
1439
+ value: 70.781
1440
+ - type: ndcg_at_1000
1441
+ value: 72.009
1442
+ - type: ndcg_at_3
1443
+ value: 64.334
1444
+ - type: ndcg_at_5
1445
+ value: 66.449
1446
+ - type: precision_at_1
1447
+ value: 87.022
1448
+ - type: precision_at_10
1449
+ value: 13.406
1450
+ - type: precision_at_100
1451
+ value: 1.542
1452
+ - type: precision_at_1000
1453
+ value: 0.17099999999999999
1454
+ - type: precision_at_3
1455
+ value: 39.023
1456
+ - type: precision_at_5
1457
+ value: 25.080000000000002
1458
+ - type: recall_at_1
1459
+ value: 43.511
1460
+ - type: recall_at_10
1461
+ value: 67.02900000000001
1462
+ - type: recall_at_100
1463
+ value: 77.11
1464
+ - type: recall_at_1000
1465
+ value: 85.294
1466
+ - type: recall_at_3
1467
+ value: 58.535000000000004
1468
+ - type: recall_at_5
1469
+ value: 62.70099999999999
1470
+ - task:
1471
+ type: Classification
1472
+ dataset:
1473
+ type: mteb/imdb
1474
+ name: MTEB ImdbClassification
1475
+ config: default
1476
+ split: test
1477
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1478
+ metrics:
1479
+ - type: accuracy
1480
+ value: 92.0996
1481
+ - type: ap
1482
+ value: 87.86206089096373
1483
+ - type: f1
1484
+ value: 92.07554547510763
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: mteb/msmarco
1489
+ name: MTEB MSMARCO
1490
+ config: default
1491
+ split: dev
1492
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 23.179
1496
+ - type: map_at_10
1497
+ value: 35.86
1498
+ - type: map_at_100
1499
+ value: 37.025999999999996
1500
+ - type: map_at_1000
1501
+ value: 37.068
1502
+ - type: map_at_3
1503
+ value: 31.921
1504
+ - type: map_at_5
1505
+ value: 34.172000000000004
1506
+ - type: mrr_at_1
1507
+ value: 23.926
1508
+ - type: mrr_at_10
1509
+ value: 36.525999999999996
1510
+ - type: mrr_at_100
1511
+ value: 37.627
1512
+ - type: mrr_at_1000
1513
+ value: 37.665
1514
+ - type: mrr_at_3
1515
+ value: 32.653
1516
+ - type: mrr_at_5
1517
+ value: 34.897
1518
+ - type: ndcg_at_1
1519
+ value: 23.910999999999998
1520
+ - type: ndcg_at_10
1521
+ value: 42.927
1522
+ - type: ndcg_at_100
1523
+ value: 48.464
1524
+ - type: ndcg_at_1000
1525
+ value: 49.533
1526
+ - type: ndcg_at_3
1527
+ value: 34.910000000000004
1528
+ - type: ndcg_at_5
1529
+ value: 38.937
1530
+ - type: precision_at_1
1531
+ value: 23.910999999999998
1532
+ - type: precision_at_10
1533
+ value: 6.758
1534
+ - type: precision_at_100
1535
+ value: 0.9520000000000001
1536
+ - type: precision_at_1000
1537
+ value: 0.104
1538
+ - type: precision_at_3
1539
+ value: 14.838000000000001
1540
+ - type: precision_at_5
1541
+ value: 10.934000000000001
1542
+ - type: recall_at_1
1543
+ value: 23.179
1544
+ - type: recall_at_10
1545
+ value: 64.622
1546
+ - type: recall_at_100
1547
+ value: 90.135
1548
+ - type: recall_at_1000
1549
+ value: 98.301
1550
+ - type: recall_at_3
1551
+ value: 42.836999999999996
1552
+ - type: recall_at_5
1553
+ value: 52.512
1554
+ - task:
1555
+ type: Classification
1556
+ dataset:
1557
+ type: mteb/mtop_domain
1558
+ name: MTEB MTOPDomainClassification (en)
1559
+ config: en
1560
+ split: test
1561
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1562
+ metrics:
1563
+ - type: accuracy
1564
+ value: 96.59598723210215
1565
+ - type: f1
1566
+ value: 96.41913500001952
1567
+ - task:
1568
+ type: Classification
1569
+ dataset:
1570
+ type: mteb/mtop_intent
1571
+ name: MTEB MTOPIntentClassification (en)
1572
+ config: en
1573
+ split: test
1574
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1575
+ metrics:
1576
+ - type: accuracy
1577
+ value: 82.89557683538533
1578
+ - type: f1
1579
+ value: 63.379319722356264
1580
+ - task:
1581
+ type: Classification
1582
+ dataset:
1583
+ type: mteb/amazon_massive_intent
1584
+ name: MTEB MassiveIntentClassification (en)
1585
+ config: en
1586
+ split: test
1587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1588
+ metrics:
1589
+ - type: accuracy
1590
+ value: 78.93745796906524
1591
+ - type: f1
1592
+ value: 75.71616541785902
1593
+ - task:
1594
+ type: Classification
1595
+ dataset:
1596
+ type: mteb/amazon_massive_scenario
1597
+ name: MTEB MassiveScenarioClassification (en)
1598
+ config: en
1599
+ split: test
1600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1601
+ metrics:
1602
+ - type: accuracy
1603
+ value: 81.41223940820443
1604
+ - type: f1
1605
+ value: 81.2877893719078
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/medrxiv-clustering-p2p
1610
+ name: MTEB MedrxivClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 35.03682528325662
1617
+ - task:
1618
+ type: Clustering
1619
+ dataset:
1620
+ type: mteb/medrxiv-clustering-s2s
1621
+ name: MTEB MedrxivClusteringS2S
1622
+ config: default
1623
+ split: test
1624
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1625
+ metrics:
1626
+ - type: v_measure
1627
+ value: 32.942529406124
1628
+ - task:
1629
+ type: Reranking
1630
+ dataset:
1631
+ type: mteb/mind_small
1632
+ name: MTEB MindSmallReranking
1633
+ config: default
1634
+ split: test
1635
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1636
+ metrics:
1637
+ - type: map
1638
+ value: 31.459949660460317
1639
+ - type: mrr
1640
+ value: 32.70509582031616
1641
+ - task:
1642
+ type: Retrieval
1643
+ dataset:
1644
+ type: mteb/nfcorpus
1645
+ name: MTEB NFCorpus
1646
+ config: default
1647
+ split: test
1648
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1649
+ metrics:
1650
+ - type: map_at_1
1651
+ value: 6.497
1652
+ - type: map_at_10
1653
+ value: 13.843
1654
+ - type: map_at_100
1655
+ value: 17.713
1656
+ - type: map_at_1000
1657
+ value: 19.241
1658
+ - type: map_at_3
1659
+ value: 10.096
1660
+ - type: map_at_5
1661
+ value: 11.85
1662
+ - type: mrr_at_1
1663
+ value: 48.916
1664
+ - type: mrr_at_10
1665
+ value: 57.764
1666
+ - type: mrr_at_100
1667
+ value: 58.251
1668
+ - type: mrr_at_1000
1669
+ value: 58.282999999999994
1670
+ - type: mrr_at_3
1671
+ value: 55.623999999999995
1672
+ - type: mrr_at_5
1673
+ value: 57.018
1674
+ - type: ndcg_at_1
1675
+ value: 46.594
1676
+ - type: ndcg_at_10
1677
+ value: 36.945
1678
+ - type: ndcg_at_100
1679
+ value: 34.06
1680
+ - type: ndcg_at_1000
1681
+ value: 43.05
1682
+ - type: ndcg_at_3
1683
+ value: 41.738
1684
+ - type: ndcg_at_5
1685
+ value: 39.330999999999996
1686
+ - type: precision_at_1
1687
+ value: 48.916
1688
+ - type: precision_at_10
1689
+ value: 27.43
1690
+ - type: precision_at_100
1691
+ value: 8.616
1692
+ - type: precision_at_1000
1693
+ value: 2.155
1694
+ - type: precision_at_3
1695
+ value: 39.112
1696
+ - type: precision_at_5
1697
+ value: 33.808
1698
+ - type: recall_at_1
1699
+ value: 6.497
1700
+ - type: recall_at_10
1701
+ value: 18.163
1702
+ - type: recall_at_100
1703
+ value: 34.566
1704
+ - type: recall_at_1000
1705
+ value: 67.15
1706
+ - type: recall_at_3
1707
+ value: 11.100999999999999
1708
+ - type: recall_at_5
1709
+ value: 14.205000000000002
1710
+ - task:
1711
+ type: Retrieval
1712
+ dataset:
1713
+ type: mteb/nq
1714
+ name: MTEB NQ
1715
+ config: default
1716
+ split: test
1717
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1718
+ metrics:
1719
+ - type: map_at_1
1720
+ value: 31.916
1721
+ - type: map_at_10
1722
+ value: 48.123
1723
+ - type: map_at_100
1724
+ value: 49.103
1725
+ - type: map_at_1000
1726
+ value: 49.131
1727
+ - type: map_at_3
1728
+ value: 43.711
1729
+ - type: map_at_5
1730
+ value: 46.323
1731
+ - type: mrr_at_1
1732
+ value: 36.181999999999995
1733
+ - type: mrr_at_10
1734
+ value: 50.617999999999995
1735
+ - type: mrr_at_100
1736
+ value: 51.329
1737
+ - type: mrr_at_1000
1738
+ value: 51.348000000000006
1739
+ - type: mrr_at_3
1740
+ value: 47.010999999999996
1741
+ - type: mrr_at_5
1742
+ value: 49.175000000000004
1743
+ - type: ndcg_at_1
1744
+ value: 36.181999999999995
1745
+ - type: ndcg_at_10
1746
+ value: 56.077999999999996
1747
+ - type: ndcg_at_100
1748
+ value: 60.037
1749
+ - type: ndcg_at_1000
1750
+ value: 60.63499999999999
1751
+ - type: ndcg_at_3
1752
+ value: 47.859
1753
+ - type: ndcg_at_5
1754
+ value: 52.178999999999995
1755
+ - type: precision_at_1
1756
+ value: 36.181999999999995
1757
+ - type: precision_at_10
1758
+ value: 9.284
1759
+ - type: precision_at_100
1760
+ value: 1.149
1761
+ - type: precision_at_1000
1762
+ value: 0.121
1763
+ - type: precision_at_3
1764
+ value: 22.006999999999998
1765
+ - type: precision_at_5
1766
+ value: 15.695
1767
+ - type: recall_at_1
1768
+ value: 31.916
1769
+ - type: recall_at_10
1770
+ value: 77.771
1771
+ - type: recall_at_100
1772
+ value: 94.602
1773
+ - type: recall_at_1000
1774
+ value: 98.967
1775
+ - type: recall_at_3
1776
+ value: 56.528
1777
+ - type: recall_at_5
1778
+ value: 66.527
1779
+ - task:
1780
+ type: Retrieval
1781
+ dataset:
1782
+ type: mteb/quora
1783
+ name: MTEB QuoraRetrieval
1784
+ config: default
1785
+ split: test
1786
+ revision: None
1787
+ metrics:
1788
+ - type: map_at_1
1789
+ value: 71.486
1790
+ - type: map_at_10
1791
+ value: 85.978
1792
+ - type: map_at_100
1793
+ value: 86.587
1794
+ - type: map_at_1000
1795
+ value: 86.598
1796
+ - type: map_at_3
1797
+ value: 83.04899999999999
1798
+ - type: map_at_5
1799
+ value: 84.857
1800
+ - type: mrr_at_1
1801
+ value: 82.32000000000001
1802
+ - type: mrr_at_10
1803
+ value: 88.64
1804
+ - type: mrr_at_100
1805
+ value: 88.702
1806
+ - type: mrr_at_1000
1807
+ value: 88.702
1808
+ - type: mrr_at_3
1809
+ value: 87.735
1810
+ - type: mrr_at_5
1811
+ value: 88.36
1812
+ - type: ndcg_at_1
1813
+ value: 82.34
1814
+ - type: ndcg_at_10
1815
+ value: 89.67
1816
+ - type: ndcg_at_100
1817
+ value: 90.642
1818
+ - type: ndcg_at_1000
1819
+ value: 90.688
1820
+ - type: ndcg_at_3
1821
+ value: 86.932
1822
+ - type: ndcg_at_5
1823
+ value: 88.408
1824
+ - type: precision_at_1
1825
+ value: 82.34
1826
+ - type: precision_at_10
1827
+ value: 13.675999999999998
1828
+ - type: precision_at_100
1829
+ value: 1.544
1830
+ - type: precision_at_1000
1831
+ value: 0.157
1832
+ - type: precision_at_3
1833
+ value: 38.24
1834
+ - type: precision_at_5
1835
+ value: 25.068
1836
+ - type: recall_at_1
1837
+ value: 71.486
1838
+ - type: recall_at_10
1839
+ value: 96.844
1840
+ - type: recall_at_100
1841
+ value: 99.843
1842
+ - type: recall_at_1000
1843
+ value: 99.996
1844
+ - type: recall_at_3
1845
+ value: 88.92099999999999
1846
+ - type: recall_at_5
1847
+ value: 93.215
1848
+ - task:
1849
+ type: Clustering
1850
+ dataset:
1851
+ type: mteb/reddit-clustering
1852
+ name: MTEB RedditClustering
1853
+ config: default
1854
+ split: test
1855
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1856
+ metrics:
1857
+ - type: v_measure
1858
+ value: 59.75758437908334
1859
+ - task:
1860
+ type: Clustering
1861
+ dataset:
1862
+ type: mteb/reddit-clustering-p2p
1863
+ name: MTEB RedditClusteringP2P
1864
+ config: default
1865
+ split: test
1866
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1867
+ metrics:
1868
+ - type: v_measure
1869
+ value: 68.03497914092789
1870
+ - task:
1871
+ type: Retrieval
1872
+ dataset:
1873
+ type: mteb/scidocs
1874
+ name: MTEB SCIDOCS
1875
+ config: default
1876
+ split: test
1877
+ revision: None
1878
+ metrics:
1879
+ - type: map_at_1
1880
+ value: 5.808
1881
+ - type: map_at_10
1882
+ value: 16.059
1883
+ - type: map_at_100
1884
+ value: 19.048000000000002
1885
+ - type: map_at_1000
1886
+ value: 19.43
1887
+ - type: map_at_3
1888
+ value: 10.953
1889
+ - type: map_at_5
1890
+ value: 13.363
1891
+ - type: mrr_at_1
1892
+ value: 28.7
1893
+ - type: mrr_at_10
1894
+ value: 42.436
1895
+ - type: mrr_at_100
1896
+ value: 43.599
1897
+ - type: mrr_at_1000
1898
+ value: 43.62
1899
+ - type: mrr_at_3
1900
+ value: 38.45
1901
+ - type: mrr_at_5
1902
+ value: 40.89
1903
+ - type: ndcg_at_1
1904
+ value: 28.7
1905
+ - type: ndcg_at_10
1906
+ value: 26.346000000000004
1907
+ - type: ndcg_at_100
1908
+ value: 36.758
1909
+ - type: ndcg_at_1000
1910
+ value: 42.113
1911
+ - type: ndcg_at_3
1912
+ value: 24.254
1913
+ - type: ndcg_at_5
1914
+ value: 21.506
1915
+ - type: precision_at_1
1916
+ value: 28.7
1917
+ - type: precision_at_10
1918
+ value: 13.969999999999999
1919
+ - type: precision_at_100
1920
+ value: 2.881
1921
+ - type: precision_at_1000
1922
+ value: 0.414
1923
+ - type: precision_at_3
1924
+ value: 22.933
1925
+ - type: precision_at_5
1926
+ value: 19.220000000000002
1927
+ - type: recall_at_1
1928
+ value: 5.808
1929
+ - type: recall_at_10
1930
+ value: 28.310000000000002
1931
+ - type: recall_at_100
1932
+ value: 58.475
1933
+ - type: recall_at_1000
1934
+ value: 84.072
1935
+ - type: recall_at_3
1936
+ value: 13.957
1937
+ - type: recall_at_5
1938
+ value: 19.515
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sickr-sts
1943
+ name: MTEB SICK-R
1944
+ config: default
1945
+ split: test
1946
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 82.39274129958557
1950
+ - type: cos_sim_spearman
1951
+ value: 79.78021235170053
1952
+ - type: euclidean_pearson
1953
+ value: 79.35335401300166
1954
+ - type: euclidean_spearman
1955
+ value: 79.7271870968275
1956
+ - type: manhattan_pearson
1957
+ value: 79.35256263340601
1958
+ - type: manhattan_spearman
1959
+ value: 79.76036386976321
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 83.99130429246708
1971
+ - type: cos_sim_spearman
1972
+ value: 73.88322811171203
1973
+ - type: euclidean_pearson
1974
+ value: 80.7569419170376
1975
+ - type: euclidean_spearman
1976
+ value: 73.82542155409597
1977
+ - type: manhattan_pearson
1978
+ value: 80.79468183847625
1979
+ - type: manhattan_spearman
1980
+ value: 73.87027144047784
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts13-sts
1985
+ name: MTEB STS13
1986
+ config: default
1987
+ split: test
1988
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 84.88548789489907
1992
+ - type: cos_sim_spearman
1993
+ value: 85.07535893847255
1994
+ - type: euclidean_pearson
1995
+ value: 84.6637222061494
1996
+ - type: euclidean_spearman
1997
+ value: 85.14200626702456
1998
+ - type: manhattan_pearson
1999
+ value: 84.75327892344734
2000
+ - type: manhattan_spearman
2001
+ value: 85.24406181838596
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts14-sts
2006
+ name: MTEB STS14
2007
+ config: default
2008
+ split: test
2009
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 82.88140039325008
2013
+ - type: cos_sim_spearman
2014
+ value: 79.61211268112362
2015
+ - type: euclidean_pearson
2016
+ value: 81.29639728816458
2017
+ - type: euclidean_spearman
2018
+ value: 79.51284578041442
2019
+ - type: manhattan_pearson
2020
+ value: 81.3381797137111
2021
+ - type: manhattan_spearman
2022
+ value: 79.55683684039808
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts15-sts
2027
+ name: MTEB STS15
2028
+ config: default
2029
+ split: test
2030
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 85.16716737270485
2034
+ - type: cos_sim_spearman
2035
+ value: 86.14823841857738
2036
+ - type: euclidean_pearson
2037
+ value: 85.36325733440725
2038
+ - type: euclidean_spearman
2039
+ value: 86.04919691402029
2040
+ - type: manhattan_pearson
2041
+ value: 85.3147511385052
2042
+ - type: manhattan_spearman
2043
+ value: 86.00676205857764
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/sts16-sts
2048
+ name: MTEB STS16
2049
+ config: default
2050
+ split: test
2051
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 80.34266645861588
2055
+ - type: cos_sim_spearman
2056
+ value: 81.59914035005882
2057
+ - type: euclidean_pearson
2058
+ value: 81.15053076245988
2059
+ - type: euclidean_spearman
2060
+ value: 81.52776915798489
2061
+ - type: manhattan_pearson
2062
+ value: 81.1819647418673
2063
+ - type: manhattan_spearman
2064
+ value: 81.57479527353556
2065
+ - task:
2066
+ type: STS
2067
+ dataset:
2068
+ type: mteb/sts17-crosslingual-sts
2069
+ name: MTEB STS17 (en-en)
2070
+ config: en-en
2071
+ split: test
2072
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2073
+ metrics:
2074
+ - type: cos_sim_pearson
2075
+ value: 89.38263326821439
2076
+ - type: cos_sim_spearman
2077
+ value: 89.10946308202642
2078
+ - type: euclidean_pearson
2079
+ value: 88.87831312540068
2080
+ - type: euclidean_spearman
2081
+ value: 89.03615865973664
2082
+ - type: manhattan_pearson
2083
+ value: 88.79835539970384
2084
+ - type: manhattan_spearman
2085
+ value: 88.9766156339753
2086
+ - task:
2087
+ type: STS
2088
+ dataset:
2089
+ type: mteb/sts22-crosslingual-sts
2090
+ name: MTEB STS22 (en)
2091
+ config: en
2092
+ split: test
2093
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2094
+ metrics:
2095
+ - type: cos_sim_pearson
2096
+ value: 70.1574915581685
2097
+ - type: cos_sim_spearman
2098
+ value: 70.59144980004054
2099
+ - type: euclidean_pearson
2100
+ value: 71.43246306918755
2101
+ - type: euclidean_spearman
2102
+ value: 70.5544189562984
2103
+ - type: manhattan_pearson
2104
+ value: 71.4071414609503
2105
+ - type: manhattan_spearman
2106
+ value: 70.31799126163712
2107
+ - task:
2108
+ type: STS
2109
+ dataset:
2110
+ type: mteb/stsbenchmark-sts
2111
+ name: MTEB STSBenchmark
2112
+ config: default
2113
+ split: test
2114
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2115
+ metrics:
2116
+ - type: cos_sim_pearson
2117
+ value: 83.36215796635351
2118
+ - type: cos_sim_spearman
2119
+ value: 83.07276756467208
2120
+ - type: euclidean_pearson
2121
+ value: 83.06690453635584
2122
+ - type: euclidean_spearman
2123
+ value: 82.9635366303289
2124
+ - type: manhattan_pearson
2125
+ value: 83.04994049700815
2126
+ - type: manhattan_spearman
2127
+ value: 82.98120125356036
2128
+ - task:
2129
+ type: Reranking
2130
+ dataset:
2131
+ type: mteb/scidocs-reranking
2132
+ name: MTEB SciDocsRR
2133
+ config: default
2134
+ split: test
2135
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2136
+ metrics:
2137
+ - type: map
2138
+ value: 86.92530011616722
2139
+ - type: mrr
2140
+ value: 96.21826793395421
2141
+ - task:
2142
+ type: Retrieval
2143
+ dataset:
2144
+ type: mteb/scifact
2145
+ name: MTEB SciFact
2146
+ config: default
2147
+ split: test
2148
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2149
+ metrics:
2150
+ - type: map_at_1
2151
+ value: 65.75
2152
+ - type: map_at_10
2153
+ value: 77.701
2154
+ - type: map_at_100
2155
+ value: 78.005
2156
+ - type: map_at_1000
2157
+ value: 78.006
2158
+ - type: map_at_3
2159
+ value: 75.48
2160
+ - type: map_at_5
2161
+ value: 76.927
2162
+ - type: mrr_at_1
2163
+ value: 68.333
2164
+ - type: mrr_at_10
2165
+ value: 78.511
2166
+ - type: mrr_at_100
2167
+ value: 78.704
2168
+ - type: mrr_at_1000
2169
+ value: 78.704
2170
+ - type: mrr_at_3
2171
+ value: 77.0
2172
+ - type: mrr_at_5
2173
+ value: 78.083
2174
+ - type: ndcg_at_1
2175
+ value: 68.333
2176
+ - type: ndcg_at_10
2177
+ value: 82.42699999999999
2178
+ - type: ndcg_at_100
2179
+ value: 83.486
2180
+ - type: ndcg_at_1000
2181
+ value: 83.511
2182
+ - type: ndcg_at_3
2183
+ value: 78.96300000000001
2184
+ - type: ndcg_at_5
2185
+ value: 81.028
2186
+ - type: precision_at_1
2187
+ value: 68.333
2188
+ - type: precision_at_10
2189
+ value: 10.667
2190
+ - type: precision_at_100
2191
+ value: 1.127
2192
+ - type: precision_at_1000
2193
+ value: 0.11299999999999999
2194
+ - type: precision_at_3
2195
+ value: 31.333
2196
+ - type: precision_at_5
2197
+ value: 20.133000000000003
2198
+ - type: recall_at_1
2199
+ value: 65.75
2200
+ - type: recall_at_10
2201
+ value: 95.578
2202
+ - type: recall_at_100
2203
+ value: 99.833
2204
+ - type: recall_at_1000
2205
+ value: 100.0
2206
+ - type: recall_at_3
2207
+ value: 86.506
2208
+ - type: recall_at_5
2209
+ value: 91.75
2210
+ - task:
2211
+ type: PairClassification
2212
+ dataset:
2213
+ type: mteb/sprintduplicatequestions-pairclassification
2214
+ name: MTEB SprintDuplicateQuestions
2215
+ config: default
2216
+ split: test
2217
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2218
+ metrics:
2219
+ - type: cos_sim_accuracy
2220
+ value: 99.75247524752476
2221
+ - type: cos_sim_ap
2222
+ value: 94.16065078045173
2223
+ - type: cos_sim_f1
2224
+ value: 87.22986247544205
2225
+ - type: cos_sim_precision
2226
+ value: 85.71428571428571
2227
+ - type: cos_sim_recall
2228
+ value: 88.8
2229
+ - type: dot_accuracy
2230
+ value: 99.74554455445545
2231
+ - type: dot_ap
2232
+ value: 93.90633887037264
2233
+ - type: dot_f1
2234
+ value: 86.9873417721519
2235
+ - type: dot_precision
2236
+ value: 88.1025641025641
2237
+ - type: dot_recall
2238
+ value: 85.9
2239
+ - type: euclidean_accuracy
2240
+ value: 99.75247524752476
2241
+ - type: euclidean_ap
2242
+ value: 94.17466319018055
2243
+ - type: euclidean_f1
2244
+ value: 87.3405299313052
2245
+ - type: euclidean_precision
2246
+ value: 85.74181117533719
2247
+ - type: euclidean_recall
2248
+ value: 89.0
2249
+ - type: manhattan_accuracy
2250
+ value: 99.75445544554455
2251
+ - type: manhattan_ap
2252
+ value: 94.27688371923577
2253
+ - type: manhattan_f1
2254
+ value: 87.74002954209749
2255
+ - type: manhattan_precision
2256
+ value: 86.42095053346266
2257
+ - type: manhattan_recall
2258
+ value: 89.1
2259
+ - type: max_accuracy
2260
+ value: 99.75445544554455
2261
+ - type: max_ap
2262
+ value: 94.27688371923577
2263
+ - type: max_f1
2264
+ value: 87.74002954209749
2265
+ - task:
2266
+ type: Clustering
2267
+ dataset:
2268
+ type: mteb/stackexchange-clustering
2269
+ name: MTEB StackExchangeClustering
2270
+ config: default
2271
+ split: test
2272
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2273
+ metrics:
2274
+ - type: v_measure
2275
+ value: 71.26500637517056
2276
+ - task:
2277
+ type: Clustering
2278
+ dataset:
2279
+ type: mteb/stackexchange-clustering-p2p
2280
+ name: MTEB StackExchangeClusteringP2P
2281
+ config: default
2282
+ split: test
2283
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2284
+ metrics:
2285
+ - type: v_measure
2286
+ value: 39.17507906280528
2287
+ - task:
2288
+ type: Reranking
2289
+ dataset:
2290
+ type: mteb/stackoverflowdupquestions-reranking
2291
+ name: MTEB StackOverflowDupQuestions
2292
+ config: default
2293
+ split: test
2294
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2295
+ metrics:
2296
+ - type: map
2297
+ value: 52.4848744828509
2298
+ - type: mrr
2299
+ value: 53.33678168236992
2300
+ - task:
2301
+ type: Summarization
2302
+ dataset:
2303
+ type: mteb/summeval
2304
+ name: MTEB SummEval
2305
+ config: default
2306
+ split: test
2307
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2308
+ metrics:
2309
+ - type: cos_sim_pearson
2310
+ value: 30.599864323827887
2311
+ - type: cos_sim_spearman
2312
+ value: 30.91116204665598
2313
+ - type: dot_pearson
2314
+ value: 30.82637894269936
2315
+ - type: dot_spearman
2316
+ value: 30.957573868416066
2317
+ - task:
2318
+ type: Retrieval
2319
+ dataset:
2320
+ type: mteb/trec-covid
2321
+ name: MTEB TRECCOVID
2322
+ config: default
2323
+ split: test
2324
+ revision: None
2325
+ metrics:
2326
+ - type: map_at_1
2327
+ value: 0.23600000000000002
2328
+ - type: map_at_10
2329
+ value: 1.892
2330
+ - type: map_at_100
2331
+ value: 11.586
2332
+ - type: map_at_1000
2333
+ value: 27.761999999999997
2334
+ - type: map_at_3
2335
+ value: 0.653
2336
+ - type: map_at_5
2337
+ value: 1.028
2338
+ - type: mrr_at_1
2339
+ value: 88.0
2340
+ - type: mrr_at_10
2341
+ value: 94.0
2342
+ - type: mrr_at_100
2343
+ value: 94.0
2344
+ - type: mrr_at_1000
2345
+ value: 94.0
2346
+ - type: mrr_at_3
2347
+ value: 94.0
2348
+ - type: mrr_at_5
2349
+ value: 94.0
2350
+ - type: ndcg_at_1
2351
+ value: 82.0
2352
+ - type: ndcg_at_10
2353
+ value: 77.48899999999999
2354
+ - type: ndcg_at_100
2355
+ value: 60.141
2356
+ - type: ndcg_at_1000
2357
+ value: 54.228
2358
+ - type: ndcg_at_3
2359
+ value: 82.358
2360
+ - type: ndcg_at_5
2361
+ value: 80.449
2362
+ - type: precision_at_1
2363
+ value: 88.0
2364
+ - type: precision_at_10
2365
+ value: 82.19999999999999
2366
+ - type: precision_at_100
2367
+ value: 61.760000000000005
2368
+ - type: precision_at_1000
2369
+ value: 23.684
2370
+ - type: precision_at_3
2371
+ value: 88.0
2372
+ - type: precision_at_5
2373
+ value: 85.6
2374
+ - type: recall_at_1
2375
+ value: 0.23600000000000002
2376
+ - type: recall_at_10
2377
+ value: 2.117
2378
+ - type: recall_at_100
2379
+ value: 14.985000000000001
2380
+ - type: recall_at_1000
2381
+ value: 51.107
2382
+ - type: recall_at_3
2383
+ value: 0.688
2384
+ - type: recall_at_5
2385
+ value: 1.1039999999999999
2386
+ - task:
2387
+ type: Retrieval
2388
+ dataset:
2389
+ type: mteb/touche2020
2390
+ name: MTEB Touche2020
2391
+ config: default
2392
+ split: test
2393
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2394
+ metrics:
2395
+ - type: map_at_1
2396
+ value: 2.3040000000000003
2397
+ - type: map_at_10
2398
+ value: 9.025
2399
+ - type: map_at_100
2400
+ value: 15.312999999999999
2401
+ - type: map_at_1000
2402
+ value: 16.954
2403
+ - type: map_at_3
2404
+ value: 4.981
2405
+ - type: map_at_5
2406
+ value: 6.32
2407
+ - type: mrr_at_1
2408
+ value: 24.490000000000002
2409
+ - type: mrr_at_10
2410
+ value: 39.835
2411
+ - type: mrr_at_100
2412
+ value: 40.8
2413
+ - type: mrr_at_1000
2414
+ value: 40.8
2415
+ - type: mrr_at_3
2416
+ value: 35.034
2417
+ - type: mrr_at_5
2418
+ value: 37.687
2419
+ - type: ndcg_at_1
2420
+ value: 22.448999999999998
2421
+ - type: ndcg_at_10
2422
+ value: 22.545
2423
+ - type: ndcg_at_100
2424
+ value: 35.931999999999995
2425
+ - type: ndcg_at_1000
2426
+ value: 47.665
2427
+ - type: ndcg_at_3
2428
+ value: 23.311
2429
+ - type: ndcg_at_5
2430
+ value: 22.421
2431
+ - type: precision_at_1
2432
+ value: 24.490000000000002
2433
+ - type: precision_at_10
2434
+ value: 20.408
2435
+ - type: precision_at_100
2436
+ value: 7.815999999999999
2437
+ - type: precision_at_1000
2438
+ value: 1.553
2439
+ - type: precision_at_3
2440
+ value: 25.169999999999998
2441
+ - type: precision_at_5
2442
+ value: 23.265
2443
+ - type: recall_at_1
2444
+ value: 2.3040000000000003
2445
+ - type: recall_at_10
2446
+ value: 15.693999999999999
2447
+ - type: recall_at_100
2448
+ value: 48.917
2449
+ - type: recall_at_1000
2450
+ value: 84.964
2451
+ - type: recall_at_3
2452
+ value: 6.026
2453
+ - type: recall_at_5
2454
+ value: 9.066
2455
+ - task:
2456
+ type: Classification
2457
+ dataset:
2458
+ type: mteb/toxic_conversations_50k
2459
+ name: MTEB ToxicConversationsClassification
2460
+ config: default
2461
+ split: test
2462
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2463
+ metrics:
2464
+ - type: accuracy
2465
+ value: 82.6074
2466
+ - type: ap
2467
+ value: 23.187467098602013
2468
+ - type: f1
2469
+ value: 65.36829506379657
2470
+ - task:
2471
+ type: Classification
2472
+ dataset:
2473
+ type: mteb/tweet_sentiment_extraction
2474
+ name: MTEB TweetSentimentExtractionClassification
2475
+ config: default
2476
+ split: test
2477
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2478
+ metrics:
2479
+ - type: accuracy
2480
+ value: 63.16355404640635
2481
+ - type: f1
2482
+ value: 63.534725639863346
2483
+ - task:
2484
+ type: Clustering
2485
+ dataset:
2486
+ type: mteb/twentynewsgroups-clustering
2487
+ name: MTEB TwentyNewsgroupsClustering
2488
+ config: default
2489
+ split: test
2490
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2491
+ metrics:
2492
+ - type: v_measure
2493
+ value: 50.91004094411276
2494
+ - task:
2495
+ type: PairClassification
2496
+ dataset:
2497
+ type: mteb/twittersemeval2015-pairclassification
2498
+ name: MTEB TwitterSemEval2015
2499
+ config: default
2500
+ split: test
2501
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2502
+ metrics:
2503
+ - type: cos_sim_accuracy
2504
+ value: 86.55301901412649
2505
+ - type: cos_sim_ap
2506
+ value: 75.25312618556728
2507
+ - type: cos_sim_f1
2508
+ value: 68.76561719140429
2509
+ - type: cos_sim_precision
2510
+ value: 65.3061224489796
2511
+ - type: cos_sim_recall
2512
+ value: 72.61213720316623
2513
+ - type: dot_accuracy
2514
+ value: 86.29671574178936
2515
+ - type: dot_ap
2516
+ value: 75.11910195501207
2517
+ - type: dot_f1
2518
+ value: 68.44048376830045
2519
+ - type: dot_precision
2520
+ value: 66.12546125461255
2521
+ - type: dot_recall
2522
+ value: 70.92348284960423
2523
+ - type: euclidean_accuracy
2524
+ value: 86.5828217202122
2525
+ - type: euclidean_ap
2526
+ value: 75.22986344900924
2527
+ - type: euclidean_f1
2528
+ value: 68.81267797449549
2529
+ - type: euclidean_precision
2530
+ value: 64.8238861674831
2531
+ - type: euclidean_recall
2532
+ value: 73.3245382585752
2533
+ - type: manhattan_accuracy
2534
+ value: 86.61262442629791
2535
+ - type: manhattan_ap
2536
+ value: 75.24401608557328
2537
+ - type: manhattan_f1
2538
+ value: 68.80473982483257
2539
+ - type: manhattan_precision
2540
+ value: 67.21187720181177
2541
+ - type: manhattan_recall
2542
+ value: 70.47493403693932
2543
+ - type: max_accuracy
2544
+ value: 86.61262442629791
2545
+ - type: max_ap
2546
+ value: 75.25312618556728
2547
+ - type: max_f1
2548
+ value: 68.81267797449549
2549
+ - task:
2550
+ type: PairClassification
2551
+ dataset:
2552
+ type: mteb/twitterurlcorpus-pairclassification
2553
+ name: MTEB TwitterURLCorpus
2554
+ config: default
2555
+ split: test
2556
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2557
+ metrics:
2558
+ - type: cos_sim_accuracy
2559
+ value: 88.10688089416696
2560
+ - type: cos_sim_ap
2561
+ value: 84.17862178779863
2562
+ - type: cos_sim_f1
2563
+ value: 76.17305208781748
2564
+ - type: cos_sim_precision
2565
+ value: 71.31246641590543
2566
+ - type: cos_sim_recall
2567
+ value: 81.74468740375731
2568
+ - type: dot_accuracy
2569
+ value: 88.1844995536927
2570
+ - type: dot_ap
2571
+ value: 84.33816725235876
2572
+ - type: dot_f1
2573
+ value: 76.43554032918746
2574
+ - type: dot_precision
2575
+ value: 74.01557767200346
2576
+ - type: dot_recall
2577
+ value: 79.0190945488143
2578
+ - type: euclidean_accuracy
2579
+ value: 88.07001203089223
2580
+ - type: euclidean_ap
2581
+ value: 84.12267000814985
2582
+ - type: euclidean_f1
2583
+ value: 76.12232600180778
2584
+ - type: euclidean_precision
2585
+ value: 74.50604541433205
2586
+ - type: euclidean_recall
2587
+ value: 77.81028641823221
2588
+ - type: manhattan_accuracy
2589
+ value: 88.06419063142779
2590
+ - type: manhattan_ap
2591
+ value: 84.11648917164187
2592
+ - type: manhattan_f1
2593
+ value: 76.20579953925474
2594
+ - type: manhattan_precision
2595
+ value: 72.56772755762935
2596
+ - type: manhattan_recall
2597
+ value: 80.22790267939637
2598
+ - type: max_accuracy
2599
+ value: 88.1844995536927
2600
+ - type: max_ap
2601
+ value: 84.33816725235876
2602
+ - type: max_f1
2603
+ value: 76.43554032918746
2604
  ---
2605
+
2606
+ <!-- **English** | [中文](./README_zh.md) -->
2607
+
2608
+ # gte-large-en-v1.5
2609
+
2610
+ We introduce `gte-v1.5` series, upgraded `gte` embeddings that support the context length of up to **8192**.
2611
+ The models are built upon the `transformer++` encoder [backbone](https://huggingface.co/Alibaba-NLP/new-impl) (BERT + RoPE + GLU).
2612
+
2613
+ The `gte-v1.5` series achieve state-of-the-art scores on the MTEB benchmark within the same model size category and prodvide competitive on the LoCo long-context retrieval tests (refer to [Evaluation](#evaluation)).
2614
+
2615
+ We also present the [`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct).
2616
+
2617
+ <!-- Provide a longer summary of what this model is. -->
2618
+
2619
+ - **Developed by:** Institute for Intelligent Computing, Alibaba Group
2620
+ - **Model type:** Text Embeddings
2621
+ - **Paper:** Coming soon.
2622
+
2623
+ <!-- - **Demo [optional]:** [More Information Needed] -->
2624
+
2625
+ ### Model list
2626
+
2627
+ | Models | Language | Model Size | Max Seq. Length | Dimension | MTEB-en | LoCo |
2628
+ |:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: |
2629
+ |[`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)| English | 7720 | 32768 | 4096 | 67.34 | 87.57 |
2630
+ |[`gte-large-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 409 | 8192 | 1024 | 65.39 | 86.71 |
2631
+ |[`gte-base-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 137 | 8192 | 768 | 64.11 | 87.44 |
2632
+
2633
+
2634
+ ## How to Get Started with the Model
2635
+
2636
+ Use the code below to get started with the model.
2637
+
2638
+ ```python
2639
+ import torch.nn.functional as F
2640
+ from transformers import AutoModel, AutoTokenizer
2641
+
2642
+ input_texts = [
2643
+ "what is the capital of China?",
2644
+ "how to implement quick sort in python?",
2645
+ "Beijing",
2646
+ "sorting algorithms"
2647
+ ]
2648
+
2649
+ model_path = 'Alibaba-NLP/gte-large-en-v1.5'
2650
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
2651
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
2652
+
2653
+ # Tokenize the input texts
2654
+ batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
2655
+
2656
+ outputs = model(**batch_dict)
2657
+ embeddings = outputs.last_hidden_state[:, 0]
2658
+
2659
+ # (Optionally) normalize embeddings
2660
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2661
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
2662
+ print(scores.tolist())
2663
+ ```
2664
+
2665
+ **It is recommended to install xformers and enable unpadding for acceleration, refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/test-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
2666
+
2667
+
2668
+ Use with sentence-transformers:
2669
+
2670
+ ```python
2671
+ from sentence_transformers import SentenceTransformer
2672
+ from sentence_transformers.util import cos_sim
2673
+
2674
+ sentences = ['That is a happy person', 'That is a very happy person']
2675
+
2676
+ model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5')
2677
+ embeddings = model.encode(sentences)
2678
+ print(cos_sim(embeddings[0], embeddings[1]))
2679
+ ```
2680
+
2681
+ ## Training Details
2682
+
2683
+ ### Training Data
2684
+
2685
+ - Masked language modeling (MLM): `c4-en`
2686
+ - Weak-supervised contrastive (WSC) pre-training: GTE pre-training data
2687
+ - Supervised contrastive fine-tuning: GTE fine-tuning data
2688
+
2689
+ ### Training Procedure
2690
+
2691
+ - MLM-512: lr 2e-4, mlm_probability 0.3, batch_size 4096, num_steps 300000, rope_base 10000
2692
+ - MLM-2048: lr 5e-5, mlm_probability 0.3, batch_size 4096, num_steps 30000, rope_base 10000
2693
+ - MLM-8192: lr 5e-5, mlm_probability 0.3, batch_size 1024, num_steps 30000, rope_base 160000
2694
+ - WSC: max_len 512, lr 5e-5, batch_size 28672, num_steps 100000
2695
+ - Fine-tuning: TODO
2696
+
2697
+
2698
+ ## Evaluation
2699
+
2700
+
2701
+ ### MTEB
2702
+
2703
+ The gte results setting: `mteb==1.2.0, fp16 auto mix precision, max_length=8192`, and set ntk scaling factor to 2 (equivalent to rope_base * 2).
2704
+
2705
+ | Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
2706
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2707
+ | [**gte-large-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | **65.39** | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
2708
+ | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
2709
+ | [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
2710
+ | [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)| 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
2711
+ | [**gte-base-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | **64.11** | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
2712
+ | [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)| 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
2713
+
2714
+
2715
+ ### LOCO
2716
+
2717
+ | Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
2718
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2719
+ | [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
2720
+ | [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
2721
+ | [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
2722
+
2723
+
2724
+
2725
+ ## Citation [TODO]
2726
+
2727
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
2728
+
2729
+ **BibTeX:**
2730
+
2731
+ [More Information Needed]
2732
+
2733
+ **APA:**
2734
+
2735
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "hidden_act": "gelu",
16
+ "hidden_dropout_prob": 0.1,
17
+ "hidden_size": 1024,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 4096,
20
+ "layer_norm_eps": 1e-12,
21
+ "layer_norm_type": "layer_norm",
22
+ "max_position_embeddings": 8192,
23
+ "model_type": "new",
24
+ "num_attention_heads": 16,
25
+ "num_hidden_layers": 24,
26
+ "pack_qkv": true,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "rope",
29
+ "rope_scaling": {
30
+ "factor": 2.0,
31
+ "type": "ntk"
32
+ },
33
+ "rope_theta": 160000,
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.39.1",
36
+ "type_vocab_size": 2,
37
+ "unpad_inputs": false,
38
+ "use_memory_efficient_attention": false,
39
+ "vocab_size": 30528
40
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe6e4200b833d5332b7c61859d7f4ff204211b1583d732353efe1b7594176cf2
3
+ size 1736585680
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 8000,
49
+ "model_max_length": 32768,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff