import ast import os import math import base64 import traceback from io import BytesIO import gdown import logging import cv2 import torch import imageio import numpy as np from PIL import Image from decord import VideoReader, cpu from moviepy.editor import VideoFileClip from transformers import StoppingCriteria from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MODAL_INDEX_MAP, DEFAULT_IMAGE_TOKEN def chunk_list(input_list, chunk_size): return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def create_photo_grid(arr, rows=None, cols=None): """ Create a photo grid from a 4D numpy array with shape [t, h, w, c]. Parameters: arr (numpy.ndarray): Input array with shape [t, h, w, c]. rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`. cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`. Returns: numpy.ndarray: A 3D numpy array representing the photo grid. """ if isinstance(arr, list): if isinstance(arr[0], Image.Image): arr = np.stack([np.array(img) for img in arr]) elif isinstance(arr[0], np.ndarray): arr = np.stack(arr) else: raise ValueError("Invalid input type. Expected list of Images or numpy arrays.") t, h, w, c = arr.shape # Calculate the number of rows and columns if not provided if rows is None and cols is None: rows = math.ceil(math.sqrt(t)) cols = math.ceil(t / rows) elif rows is None: rows = math.ceil(t / cols) elif cols is None: cols = math.ceil(t / rows) # Check if the grid can hold all the images if rows * cols < t: raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).") # Create the grid array with appropriate height and width grid_height = h * rows grid_width = w * cols grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype) # Fill the grid with images for i in range(t): row_idx = i // cols col_idx = i % cols grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i] return grid def process_image(image_path, processor, aspect_ratio='pad'): image = Image.open(image_path).convert('RGB') images = [np.array(image)] if aspect_ratio == 'pad': images = [Image.fromarray(f) for f in images] images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] else: images = [Image.fromarray(f) for f in images] images = processor.preprocess(images, return_tensors='pt')['pixel_values'] return images def frame_sample(duration, mode='uniform', num_frames=None, fps=None): if mode == 'uniform': assert num_frames is not None, "Number of frames must be provided for uniform sampling." # NOTE: v1 version # Calculate the size of each segment from which a frame will be extracted seg_size = float(duration - 1) / num_frames frame_ids = [] for i in range(num_frames): # Calculate the start and end indices of each segment start = seg_size * i end = seg_size * (i + 1) # Append the middle index of the segment to the list frame_ids.append((start + end) / 2) return np.round(np.array(frame_ids) + 1e-6).astype(int) # NOTE: v0 version # return np.linspace(0, duration-1, num_frames, dtype=int) elif mode == 'fps': assert fps is not None, "FPS must be provided for FPS sampling." segment_len = min(fps // NUM_FRAMES_PER_SECOND, duration) return np.arange(segment_len // 2, duration, segment_len, dtype=int) else: raise ImportError(f'Unsupported frame sampling mode: {mode}') def process_video(video_path, processor, s=None, e=None, aspect_ratio='pad', num_frames=NUM_FRAMES): output = 'Temp.mp4' gdown.download(video_path, output, quiet=False) video_path = 'Temp.mp4' logging.info(f"video downloaded form: {video_path}") if isinstance(video_path, str): if s is not None and e is not None: s = s if s >= 0. else 0. e = e if e >= 0. else 0. if s > e: s, e = e, s elif s == e: e = s + 1 # 1. Loading Video if os.path.isdir(video_path): frame_files = sorted(os.listdir(video_path)) fps = 3 num_frames_of_video = len(frame_files) elif video_path.endswith('.gif'): gif_reader = imageio.get_reader(video_path) fps = 25 num_frames_of_video = len(gif_reader) else: vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1) fps = vreader.get_avg_fps() num_frames_of_video = len(vreader) # 2. Determine frame range & Calculate frame indices f_start = 0 if s is None else max(int(s * fps) - 1, 0) f_end = num_frames_of_video - 1 if e is None else min(int(e * fps) - 1, num_frames_of_video - 1) frame_indices = list(range(f_start, f_end + 1)) duration = len(frame_indices) # 3. Sampling frame indices if num_frames is None: sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', fps=fps)] else: sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=num_frames)] # 4. Acquire frame data if os.path.isdir(video_path): video_data = [Image.open(os.path.join(video_path, frame_files[f_idx])) for f_idx in sampled_frame_indices] elif video_path.endswith('.gif'): video_data = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices] else: video_data = [Image.fromarray(frame) for frame in vreader.get_batch(sampled_frame_indices).asnumpy()] elif isinstance(video_path, np.ndarray): video_data = [Image.fromarray(f) for f in video_path] elif isinstance(video_path, list) and isinstance(video_path[0], np.ndarray): video_data = [Image.fromarray(f) for f in video_path] elif isinstance(video_path, list) and isinstance(video_path[0], str): video_data = [Image.open(f) for f in video_path] elif isinstance(video_path, list) and isinstance(video_path[0], Image.Image): video_data = video_path else: raise ValueError(f"Unsupported video path type: {type(video_path)}") while num_frames is not None and len(video_data) < num_frames: video_data.append(Image.fromarray(np.zeros((*video_data[-1].size, 3), dtype=np.uint8))) # MAX_FRAMES filter video_data = video_data[:MAX_FRAMES] if aspect_ratio == 'pad': images = [expand2square(f, tuple(int(x*255) for x in processor.image_mean)) for f in video_data] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] else: images = [f for f in video_data] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] return video def process_video_old(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'): def frame_sample(duration, mode='uniform', local_fps=None): if mode == 'uniform': # Calculate the size of each segment from which a frame will be extracted seg_size = float(duration - 1) / num_frames frame_ids = [] for i in range(num_frames): # Calculate the start and end indices of each segment start = int(np.round(seg_size * i)) end = int(np.round(seg_size * (i + 1))) # Append the middle index of the segment to the list frame_ids.append((start + end) // 2) return frame_ids # NOTE: old version # return np.linspace(0, duration-1, num_frames, dtype=int) elif mode == 'fps': assert local_fps is not None segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration) return np.arange(segment_len // 2, duration, segment_len, dtype=int) else: raise ImportError(f'Unsupported frame sampling mode: {mode}') if isinstance(video_path, str): if video_path.endswith('.gif'): video_gif = imageio.get_reader(video_path) duration, local_fps = len(video_gif), 10 frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) # limit the max input frames if len(frame_id_list) > MAX_FRAMES: frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list] # added by lixin4ever, include the support of .webm files from sthsthv2 elif video_path.endswith('.webm'): video_webm = VideoFileClip(video_path) video_frames = np.array(list(video_webm.iter_frames())) duration, local_fps = len(video_frames), video_webm.fps frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) # limit the max input frames if len(frame_id_list) > MAX_FRAMES: frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) video_data = video_frames[frame_id_list] else: # NOTE: num_threads=1 is required to avoid deadlock in multiprocessing decord_vr = VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps()) frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) # limit the max input frames if len(frame_id_list) > MAX_FRAMES: frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) try: video_data = decord_vr.get_batch(frame_id_list).numpy() except: video_data = decord_vr.get_batch(frame_id_list).asnumpy() elif isinstance(video_path, np.ndarray): assert len(video_path) == num_frames video_data = video_path elif isinstance(video_path, list): assert len(video_path) == num_frames video_data = np.stack([np.array(x) for x in video_path]) if image_grid: grid_h = grid_w = math.ceil(math.sqrt(num_frames)) pg = create_photo_grid(video_data, grid_h, grid_w) video_data = [pg, *video_data] if aspect_ratio == 'pad': images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] else: images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] return video def tokenizer_multimodal_token(prompt, tokenizer, multimodal_token=DEFAULT_IMAGE_TOKEN, return_tensors=None): """Tokenize text and multimodal tag to input_ids. Args: prompt (str): Text prompt (w/ multimodal tag), e.g., '