Commit
·
e8e1802
1
Parent(s):
f644c7c
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
datasets:
|
4 |
+
- Open-Orca/OpenOrca
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
# Test task
|
10 |
+
|
11 |
+
For model inference run following
|
12 |
+
|
13 |
+
```python
|
14 |
+
from peft import PeftModel, PeftConfig
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
16 |
+
from peft import PeftModel
|
17 |
+
|
18 |
+
seed_value = 42
|
19 |
+
torch.manual_seed(seed_value)
|
20 |
+
torch.cuda.manual_seed_all(seed_value)
|
21 |
+
|
22 |
+
|
23 |
+
model_name = "lmsys/vicuna-7b-v1.5"
|
24 |
+
lora_name = 'AlexWortega/PaltaTest'
|
25 |
+
|
26 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_name, model_max_length=1024)
|
27 |
+
tokenizer.pad_token = tokenizer.eos_token
|
28 |
+
|
29 |
+
model = PeftModel.from_pretrained(
|
30 |
+
model,
|
31 |
+
lora_name,
|
32 |
+
torch_dtype=torch.float16
|
33 |
+
)
|
34 |
+
model.eval()
|
35 |
+
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 ).to('cpu')
|
37 |
+
|
38 |
+
|
39 |
+
model = PeftModel.from_pretrained(model, path_adapter)
|
40 |
+
model.to(device)
|
41 |
+
model.eval()
|
42 |
+
|
43 |
+
def process_output(i, o):
|
44 |
+
"""
|
45 |
+
Simple output processing
|
46 |
+
"""
|
47 |
+
if isinstance(o, list):
|
48 |
+
return [seq.split('A:')[1] for seq in o]
|
49 |
+
elif isinstance(o, str):
|
50 |
+
return o.split('A:')[1]
|
51 |
+
else:
|
52 |
+
return "Unsupported data type. Please provide a list or a string."
|
53 |
+
|
54 |
+
def generate_seqs(q, k=2):
|
55 |
+
|
56 |
+
q = 'Q:'+ q + 'A:'
|
57 |
+
tokens = tokenizer.encode(q, return_tensors='pt').to(device)
|
58 |
+
g = model.generate(input_ids=tokens)
|
59 |
+
generated_sequences = tokenizer.batch_decode(g, skip_special_tokens=True)
|
60 |
+
|
61 |
+
return generated_sequences
|
62 |
+
|
63 |
+
q = """Given a weather description in plain text, rewrite it in a different style
|
64 |
+
|
65 |
+
```The weather is sunny and the temperature is 20 degrees. The wind is blowing at 10 km/h.
|
66 |
+
Citizens are advised to go out and enjoy the weather. The weather is expected to be sunny tomorrow.
|
67 |
+
```
|
68 |
+
|
69 |
+
And the following style: "Angry weatherman"
|
70 |
+
"""
|
71 |
+
|
72 |
+
s = generate_seqs(q=q)
|
73 |
+
s = process_output(q,s)
|
74 |
+
print(s[0])#should output something like these
|
75 |
+
"""
|
76 |
+
Angry weatherman: "The weather is sunny and the temperature is 20 degrees. The wind is blowing at 10 km/h.
|
77 |
+
Citizens are advised to stay indoors and avoid going out. The weather is expected to be sunny tomorrow.
|
78 |
+
|
79 |
+
"""
|
80 |
+
|
81 |
+
```
|