AlexHung29629 commited on
Commit
853e052
·
verified ·
1 Parent(s): 9cf3441

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpeechUnitModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_speechunit.SpeechUnitConfig",
7
+ "AutoModelForCausalLM": "modeling_speechunit.SpeechUnitModel"
8
+ },
9
+ "base_model_id": "meta-llama/Llama-3.2-1B",
10
+ "initializer_range": 0.02,
11
+ "model_type": "speechunit",
12
+ "num_heads": 8,
13
+ "num_hidden_layers": 3,
14
+ "output_dim": 2048,
15
+ "torch_dtype": "float32",
16
+ "transformers_version": "4.47.1"
17
+ }
configuration_speechunit.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class SpeechUnitConfig(PretrainedConfig):
5
+ model_type = "speechunit"
6
+
7
+ def __init__(
8
+ self,
9
+ base_model_id: str = "meta-llama/Llama-3.2-1B",
10
+ num_hidden_layers: int = 3,
11
+ output_dim: int = 2048,
12
+ num_heads: int = 8,
13
+ initializer_range: float = 0.02,
14
+ **kwargs,
15
+ ):
16
+ self.base_model_id = base_model_id
17
+ self.num_hidden_layers = num_hidden_layers
18
+ self.output_dim = output_dim
19
+ self.num_heads = num_heads
20
+ self.initializer_range = initializer_range
21
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2adb59175cf4905c66e840ef50f60fca817e03f4e94ca7efde6f35afc164fc03
3
+ size 2049176536
modeling_speechunit.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from transformers import LlamaConfig, LlamaModel, PreTrainedModel
6
+ from transformers.cache_utils import Cache
7
+ from transformers.modeling_outputs import CausalLMOutputWithPast
8
+ from transformers.models.llama.modeling_llama import KwargsForCausalLM
9
+ from transformers.processing_utils import Unpack
10
+
11
+ from configuration_speechunit import SpeechUnitConfig
12
+
13
+
14
+ # Copied from transformer.models.llama.modeling_llama.LlamaPreTrainedModel class
15
+ class SpeechUnitPreTrainedModel(PreTrainedModel):
16
+ config_class = SpeechUnitConfig
17
+ base_model_prefix = "model"
18
+ supports_gradient_checkpointing = True
19
+ _no_split_modules = ["LlamaDecoderLayer"]
20
+ _skip_keys_device_placement = ["past_key_values"]
21
+ _supports_flash_attn_2 = True
22
+ _supports_sdpa = True
23
+ _supports_cache_class = True
24
+ _supports_quantized_cache = True
25
+ _supports_static_cache = True
26
+
27
+ def _init_weights(self, module):
28
+ std = self.config.initializer_range
29
+ if isinstance(module, nn.Linear):
30
+ module.weight.data.normal_(mean=0.0, std=std)
31
+ if module.bias is not None:
32
+ module.bias.data.zero_()
33
+ elif isinstance(module, nn.Embedding):
34
+ module.weight.data.normal_(mean=0.0, std=std)
35
+ if module.padding_idx is not None:
36
+ module.weight.data[module.padding_idx].zero_()
37
+ elif isinstance(module, SpeechUnitModel):
38
+ src_model = LlamaModel.from_pretrained(self.config.base_model_id)
39
+ with torch.no_grad():
40
+ for name, param in module.llama_model.named_parameters():
41
+ param.copy_(src_model.state_dict()[name])
42
+
43
+ class SpeechUnitModel(SpeechUnitPreTrainedModel):
44
+ def __init__(self, config: SpeechUnitConfig):
45
+ super(SpeechUnitModel, self).__init__(config)
46
+
47
+ # Initialize LLaMA model and load weights
48
+ llama_config = LlamaConfig.from_pretrained(config.base_model_id)
49
+ llama_config.num_hidden_layers = config.num_hidden_layers
50
+ self.llama_model = LlamaModel._from_config(llama_config)
51
+
52
+ # Embedding layers
53
+ original_vocab_size, embed_dim = self.llama_model.embed_tokens.weight.shape
54
+
55
+ # Audio embeddings (16400 = codebook size + 2 for BOS and EOS tokens)
56
+ self.audio_embed = nn.Embedding(16400, embed_dim)
57
+ nn.init.xavier_uniform_(self.audio_embed.weight.data)
58
+
59
+ # Learnable weights for token integration
60
+ self.token_weights = nn.Parameter(torch.ones(config.num_heads))
61
+
62
+ # Prediction heads
63
+ self.heads = nn.ModuleList([nn.Linear(embed_dim, config.output_dim) for _ in range(config.num_heads)])
64
+
65
+ self.post_init()
66
+
67
+ def forward(self,
68
+ input_ids: torch.LongTensor = None,
69
+ attention_mask: Optional[torch.Tensor] = None,
70
+ position_ids: Optional[torch.LongTensor] = None,
71
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
72
+ inputs_embeds: Optional[torch.FloatTensor] = None,
73
+ labels: Optional[torch.LongTensor] = None,
74
+ use_cache: Optional[bool] = None,
75
+ output_attentions: Optional[bool] = None,
76
+ output_hidden_states: Optional[bool] = None,
77
+ return_dict: Optional[bool] = None,
78
+ cache_position: Optional[torch.LongTensor] = None,
79
+ num_logits_to_keep: int = 0,
80
+ **kwargs: Unpack[KwargsForCausalLM],
81
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
82
+ # 參考 https://github.com/huggingface/transformers/blob/b05df6611e6e3e6834acca2b50baeb7cdd5fbe3c/src/transformers/models/llama/modeling_llama.py#L784
83
+ pass