Upload folder using huggingface_hub
Browse files- config.py +51 -10
- model.py +110 -231
- norm.py +21 -0
- splitter.py +4 -10
- transformer_backbone.py +1553 -0
config.py
CHANGED
@@ -23,6 +23,9 @@ class TransformerHATModelConfig(LlamaConfig):
|
|
23 |
sliding_window: int | None = None,
|
24 |
vocab_size: int = 0,
|
25 |
hidden_act: str = "silu",
|
|
|
|
|
|
|
26 |
**kwargs,
|
27 |
):
|
28 |
super().__init__(
|
@@ -43,6 +46,9 @@ class TransformerHATModelConfig(LlamaConfig):
|
|
43 |
)
|
44 |
|
45 |
self.sliding_window = sliding_window
|
|
|
|
|
|
|
46 |
|
47 |
def to_dict(self):
|
48 |
config_dict = {
|
@@ -60,6 +66,9 @@ class TransformerHATModelConfig(LlamaConfig):
|
|
60 |
"use_cache": self.use_cache,
|
61 |
"sliding_window": self.sliding_window,
|
62 |
"transformers_version": self.transformers_version,
|
|
|
|
|
|
|
63 |
}
|
64 |
return config_dict
|
65 |
|
@@ -74,6 +83,8 @@ class CrossAttentionConfig:
|
|
74 |
num_attention_heads: int,
|
75 |
attention_num_kv_heads: int,
|
76 |
word_window_size: int,
|
|
|
|
|
77 |
):
|
78 |
self.hidden_size = hidden_size
|
79 |
self.hidden_size_q = hidden_size_q
|
@@ -81,6 +92,8 @@ class CrossAttentionConfig:
|
|
81 |
self.num_attention_heads = num_attention_heads
|
82 |
self.attention_num_kv_heads = attention_num_kv_heads
|
83 |
self.word_window_size = word_window_size
|
|
|
|
|
84 |
|
85 |
def to_dict(self):
|
86 |
return {
|
@@ -90,6 +103,8 @@ class CrossAttentionConfig:
|
|
90 |
"num_attention_heads": self.num_attention_heads,
|
91 |
"attention_num_kv_heads": self.attention_num_kv_heads,
|
92 |
"word_window_size": self.word_window_size,
|
|
|
|
|
93 |
}
|
94 |
|
95 |
|
@@ -158,17 +173,19 @@ class EncoderHATModelConfig(TransformerHATModelConfig):
|
|
158 |
|
159 |
@dataclass
|
160 |
class HATArchitectureConfig(PretrainedConfig):
|
161 |
-
model_type: str
|
162 |
|
163 |
def __init__(
|
164 |
self,
|
165 |
-
special_token_dict
|
166 |
encoder_config: EncoderHATModelConfig | None = None,
|
167 |
backbone_config: TransformerHATModelConfig | None = None,
|
168 |
decoder_config: DecoderHATModelConfig | None = None,
|
169 |
model_type: str = "hierarchical_autoregressive_transformer",
|
170 |
eos_token_id: int = 192,
|
171 |
max_word_size: int = 100,
|
|
|
|
|
172 |
**kwargs,
|
173 |
):
|
174 |
super().__init__(**kwargs)
|
@@ -181,6 +198,12 @@ class HATArchitectureConfig(PretrainedConfig):
|
|
181 |
self.special_token_dict = special_token_dict
|
182 |
self.transformers_version = "4.46.3"
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
@classmethod
|
185 |
def from_dict(cls, config_dict, **kwargs):
|
186 |
"""
|
@@ -202,14 +225,25 @@ class HATArchitectureConfig(PretrainedConfig):
|
|
202 |
decoder_config = DecoderHATModelConfig.from_dict(decoder_dict) if decoder_dict else None
|
203 |
special_token_dict = config_dict.pop("special_token_dict", {"<|eot_id|>": 192})
|
204 |
max_word_size = config_dict.pop("max_word_size", 100)
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
def to_dict(self):
|
215 |
config_dict = {}
|
@@ -223,6 +257,13 @@ class HATArchitectureConfig(PretrainedConfig):
|
|
223 |
config_dict["transformers_version"] = self.transformers_version
|
224 |
config_dict["auto_map"] = {"AutoConfig": "config.HATArchitectureConfig", "AutoModelForCausalLM": "model.HATForCausalLM"}
|
225 |
config_dict["special_token_dict"] = self.special_token_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
return config_dict
|
227 |
|
228 |
|
|
|
23 |
sliding_window: int | None = None,
|
24 |
vocab_size: int = 0,
|
25 |
hidden_act: str = "silu",
|
26 |
+
key_query_norm: bool = False,
|
27 |
+
key_query_norm_per_head: bool = False,
|
28 |
+
is_neox_style: bool = True,
|
29 |
**kwargs,
|
30 |
):
|
31 |
super().__init__(
|
|
|
46 |
)
|
47 |
|
48 |
self.sliding_window = sliding_window
|
49 |
+
self.key_query_norm = key_query_norm
|
50 |
+
self.key_query_norm_per_head = key_query_norm_per_head
|
51 |
+
self.is_neox_style = is_neox_style
|
52 |
|
53 |
def to_dict(self):
|
54 |
config_dict = {
|
|
|
66 |
"use_cache": self.use_cache,
|
67 |
"sliding_window": self.sliding_window,
|
68 |
"transformers_version": self.transformers_version,
|
69 |
+
"key_query_norm": self.key_query_norm,
|
70 |
+
"key_query_norm_per_head": self.key_query_norm_per_head,
|
71 |
+
"is_neox_style": self.is_neox_style,
|
72 |
}
|
73 |
return config_dict
|
74 |
|
|
|
83 |
num_attention_heads: int,
|
84 |
attention_num_kv_heads: int,
|
85 |
word_window_size: int,
|
86 |
+
key_query_norm: bool,
|
87 |
+
key_query_norm_per_head: bool,
|
88 |
):
|
89 |
self.hidden_size = hidden_size
|
90 |
self.hidden_size_q = hidden_size_q
|
|
|
92 |
self.num_attention_heads = num_attention_heads
|
93 |
self.attention_num_kv_heads = attention_num_kv_heads
|
94 |
self.word_window_size = word_window_size
|
95 |
+
self.key_query_norm = key_query_norm
|
96 |
+
self.key_query_norm_per_head = key_query_norm_per_head
|
97 |
|
98 |
def to_dict(self):
|
99 |
return {
|
|
|
103 |
"num_attention_heads": self.num_attention_heads,
|
104 |
"attention_num_kv_heads": self.attention_num_kv_heads,
|
105 |
"word_window_size": self.word_window_size,
|
106 |
+
"key_query_norm": self.key_query_norm,
|
107 |
+
"key_query_norm_per_head": self.key_query_norm_per_head,
|
108 |
}
|
109 |
|
110 |
|
|
|
173 |
|
174 |
@dataclass
|
175 |
class HATArchitectureConfig(PretrainedConfig):
|
176 |
+
model_type: str = "hierarchical_autoregressive_transformer"
|
177 |
|
178 |
def __init__(
|
179 |
self,
|
180 |
+
special_token_dict: dict | None = None,
|
181 |
encoder_config: EncoderHATModelConfig | None = None,
|
182 |
backbone_config: TransformerHATModelConfig | None = None,
|
183 |
decoder_config: DecoderHATModelConfig | None = None,
|
184 |
model_type: str = "hierarchical_autoregressive_transformer",
|
185 |
eos_token_id: int = 192,
|
186 |
max_word_size: int = 100,
|
187 |
+
sliding_window: int = 768,
|
188 |
+
max_position_embeddings: int = 262144,
|
189 |
**kwargs,
|
190 |
):
|
191 |
super().__init__(**kwargs)
|
|
|
198 |
self.special_token_dict = special_token_dict
|
199 |
self.transformers_version = "4.46.3"
|
200 |
|
201 |
+
# set these for out of the box vllm inference
|
202 |
+
self.architectures = ["HATDecoderForCausalLM"]
|
203 |
+
self.sliding_window = sliding_window
|
204 |
+
self.max_position_embeddings = max_position_embeddings
|
205 |
+
self.torch_dtype = "bfloat16"
|
206 |
+
|
207 |
@classmethod
|
208 |
def from_dict(cls, config_dict, **kwargs):
|
209 |
"""
|
|
|
225 |
decoder_config = DecoderHATModelConfig.from_dict(decoder_dict) if decoder_dict else None
|
226 |
special_token_dict = config_dict.pop("special_token_dict", {"<|eot_id|>": 192})
|
227 |
max_word_size = config_dict.pop("max_word_size", 100)
|
228 |
+
return_unused_kwargs = config_dict.pop("return_unused_kwargs", False)
|
229 |
+
if return_unused_kwargs:
|
230 |
+
return cls(
|
231 |
+
encoder_config=encoder_config,
|
232 |
+
backbone_config=backbone_config,
|
233 |
+
decoder_config=decoder_config,
|
234 |
+
special_token_dict=special_token_dict,
|
235 |
+
max_word_size=max_word_size,
|
236 |
+
**config_dict,
|
237 |
+
), {}
|
238 |
+
else:
|
239 |
+
return cls(
|
240 |
+
encoder_config=encoder_config,
|
241 |
+
backbone_config=backbone_config,
|
242 |
+
decoder_config=decoder_config,
|
243 |
+
special_token_dict=special_token_dict,
|
244 |
+
max_word_size=max_word_size,
|
245 |
+
**config_dict,
|
246 |
+
)
|
247 |
|
248 |
def to_dict(self):
|
249 |
config_dict = {}
|
|
|
257 |
config_dict["transformers_version"] = self.transformers_version
|
258 |
config_dict["auto_map"] = {"AutoConfig": "config.HATArchitectureConfig", "AutoModelForCausalLM": "model.HATForCausalLM"}
|
259 |
config_dict["special_token_dict"] = self.special_token_dict
|
260 |
+
|
261 |
+
# print these out to the config for vllm
|
262 |
+
config_dict["max_word_size"] = self.max_word_size
|
263 |
+
config_dict["sliding_window"] = self.sliding_window
|
264 |
+
config_dict["max_position_embeddings"] = self.max_position_embeddings
|
265 |
+
config_dict["torch_dtype"] = self.torch_dtype
|
266 |
+
config_dict["architectures"] = self.architectures
|
267 |
return config_dict
|
268 |
|
269 |
|
model.py
CHANGED
@@ -10,10 +10,6 @@ from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
|
10 |
from transformers import PreTrainedModel
|
11 |
from transformers.cache_utils import Cache, DynamicCache
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
-
from transformers.models.llama.modeling_llama import (
|
14 |
-
LlamaDecoderLayer,
|
15 |
-
LlamaRotaryEmbedding,
|
16 |
-
)
|
17 |
from transformers.utils import ModelOutput
|
18 |
|
19 |
from .config import (
|
@@ -24,6 +20,11 @@ from .config import (
|
|
24 |
TransformerHATModelConfig,
|
25 |
)
|
26 |
from .splitter import HATSplitter
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
try:
|
29 |
transformers_version = version("transformers")
|
@@ -37,10 +38,9 @@ def sample_argmax(logits: torch.Tensor) -> torch.Tensor:
|
|
37 |
return torch.argmax(logits, dim=-1)[:, -1]
|
38 |
|
39 |
|
40 |
-
LLAMA_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id
|
41 |
-
You are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id
|
42 |
-
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id
|
43 |
-
|
44 |
|
45 |
|
46 |
class HATCache(Cache):
|
@@ -173,26 +173,6 @@ class HATDecoderConnector(nn.Module):
|
|
173 |
return activations
|
174 |
|
175 |
|
176 |
-
class RMSNorm(nn.Module):
|
177 |
-
def __init__(self, dimensions: int, eps: float, device: torch.device, dtype: torch.dtype = torch.bfloat16, norm_in_fp32: bool = False):
|
178 |
-
super().__init__()
|
179 |
-
self.eps = eps
|
180 |
-
self.weight = torch.nn.Parameter(torch.ones(dimensions, dtype=dtype).to(device))
|
181 |
-
self.norm_in_fp32 = norm_in_fp32
|
182 |
-
|
183 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
184 |
-
original_dtype = x.dtype
|
185 |
-
if self.norm_in_fp32:
|
186 |
-
x = x.float()
|
187 |
-
|
188 |
-
out = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
189 |
-
|
190 |
-
if out.dtype != original_dtype:
|
191 |
-
out = out.to(original_dtype)
|
192 |
-
|
193 |
-
return out * self.weight
|
194 |
-
|
195 |
-
|
196 |
class HATDecoderBlock(nn.Module):
|
197 |
def __init__(
|
198 |
self,
|
@@ -354,6 +334,8 @@ class HATCrossAttention(nn.Module):
|
|
354 |
self.num_key_value_heads = cross_attention_config.attention_num_kv_heads
|
355 |
self.num_repeat_kv = cross_attention_config.num_attention_heads // cross_attention_config.attention_num_kv_heads
|
356 |
self.head_dim = hidden_size // self.num_heads
|
|
|
|
|
357 |
|
358 |
self.q_proj = nn.Linear(
|
359 |
in_features=hidden_size_q,
|
@@ -376,6 +358,30 @@ class HATCrossAttention(nn.Module):
|
|
376 |
bias=False,
|
377 |
)
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
self.o_proj = nn.Linear(in_features=hidden_size, out_features=hidden_size_q, dtype=dtype, bias=False)
|
380 |
|
381 |
rope_theta = config.rope_theta
|
@@ -402,6 +408,34 @@ class HATCrossAttention(nn.Module):
|
|
402 |
key_states = self.k_proj(kv_activations)
|
403 |
value_states = self.v_proj(kv_activations)
|
404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
# TODO get rid of the double rearrange, this is just for compatibility with scaling
|
406 |
query_states = rearrange(query_states, "bsz seq_len (h d) -> bsz h seq_len d", h=self.num_heads)
|
407 |
key_states = rearrange(
|
@@ -489,7 +523,6 @@ class HATEncoderConnector(nn.Module):
|
|
489 |
device=self.latent_query.device,
|
490 |
dtype=torch.int32,
|
491 |
)
|
492 |
-
|
493 |
word_embeddings = self.cross_attention_encoder_connector.forward(
|
494 |
q_activations=latent_query_repeated,
|
495 |
kv_activations=hidden_states,
|
@@ -609,7 +642,7 @@ class HATForCausalLM(PreTrainedModel):
|
|
609 |
backbone_past_key_values = past_key_values.get_backbone_cache() if past_key_values is not None else None
|
610 |
decoder_past_key_values = past_key_values.get_decoder_cache() if past_key_values is not None else None
|
611 |
|
612 |
-
encoder_output: BaseModelOutputWithPast = self.encoder
|
613 |
input_ids=input_ids,
|
614 |
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
615 |
byte_position_ids=byte_position_ids,
|
@@ -619,13 +652,13 @@ class HATForCausalLM(PreTrainedModel):
|
|
619 |
)
|
620 |
byte_level_activations = encoder_output.hidden_states
|
621 |
|
622 |
-
encoder_connector_output = self.encoder_connector
|
623 |
byte_level_activations,
|
624 |
cumulative_seq_lengths_per_word,
|
625 |
word_position_ids,
|
626 |
byte_position_ids,
|
627 |
)
|
628 |
-
backbone_output: CausalLMOutputWithPast = self.backbone
|
629 |
hidden_states=encoder_connector_output,
|
630 |
position_ids=word_position_ids,
|
631 |
past_key_values=backbone_past_key_values,
|
@@ -660,7 +693,7 @@ class HATForCausalLM(PreTrainedModel):
|
|
660 |
def _append_byte(self, words: list[list[int]], token: int) -> list[list[int]]:
|
661 |
extended_last_word = words.pop() + [token]
|
662 |
try:
|
663 |
-
text = self.splitter.decode(extended_last_word, errors=
|
664 |
list_of_bytes = self.splitter.encode(text)
|
665 |
words.extend([list(word_in_bytes) for word_in_bytes in list_of_bytes])
|
666 |
except UnicodeDecodeError:
|
@@ -669,70 +702,20 @@ class HATForCausalLM(PreTrainedModel):
|
|
669 |
words.append(extended_last_word)
|
670 |
return words
|
671 |
|
672 |
-
def _split_encoder_activations(
|
673 |
-
self,
|
674 |
-
byte_encoder_activations: torch.Tensor,
|
675 |
-
words: list[list[int]],
|
676 |
-
previous_encoder_activations: torch.Tensor | None = None,
|
677 |
-
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
678 |
-
"""Split encoder activations between first word and next word.
|
679 |
-
|
680 |
-
Args:
|
681 |
-
byte_encoder_activations: Tensor of shape [batch_size, seq_len, hidden_size] containing all encoder activations which were computed in the current iteration
|
682 |
-
words: List of word byte sequences which were completed in previous iteration and current iteration
|
683 |
-
previous_encoder_activations: Optional tensor of shape [batch_size, prev_seq_len, hidden_size] containing precomputed activations from the previous iteration
|
684 |
-
|
685 |
-
Returns:
|
686 |
-
tuple containing:
|
687 |
-
- first_word_encoder_activations: Tensor of shape [batch_size, first_word_len, hidden_size]
|
688 |
-
- next_word_encoder_activations: Tensor of shape [batch_size, remaining_len, hidden_size]
|
689 |
-
"""
|
690 |
-
|
691 |
-
assert sum(len(word) for word in words) - 1 == byte_encoder_activations.shape[1] + (previous_encoder_activations.shape[1] if previous_encoder_activations is not None else 0), "Length of (words - 1) must match the sum of byte_encoder_activations and previous_encoder_activations dimensions"
|
692 |
-
|
693 |
-
next_word_encoder_activations = None
|
694 |
-
if previous_encoder_activations is not None:
|
695 |
-
# We have already precomputed first word's encoder activations partially in the previous iteration
|
696 |
-
new_bytes_of_first_words = len(words[0]) - previous_encoder_activations.shape[1]
|
697 |
-
# Concatenate the precomputed activations with the new activations that still belong to the first word
|
698 |
-
first_word_encoder_activations = torch.cat([previous_encoder_activations, byte_encoder_activations[:, :new_bytes_of_first_words]], dim=1)
|
699 |
-
if len(words[1]) > 1:
|
700 |
-
# The remaining activations that belong to the next word
|
701 |
-
next_word_encoder_activations = byte_encoder_activations[:, new_bytes_of_first_words:]
|
702 |
-
else:
|
703 |
-
next_word_encoder_activations = None
|
704 |
-
else:
|
705 |
-
# We have not precomputed any activations for the first word previously
|
706 |
-
first_word_encoder_activations = byte_encoder_activations[:, : len(words[0])]
|
707 |
-
|
708 |
-
if len(words[1]) > 1:
|
709 |
-
next_word_encoder_activations = byte_encoder_activations[:, len(words[0]) :]
|
710 |
-
else:
|
711 |
-
next_word_encoder_activations = None
|
712 |
-
|
713 |
-
return first_word_encoder_activations, next_word_encoder_activations
|
714 |
-
|
715 |
def _complete_word(
|
716 |
self,
|
717 |
input_ids: torch.Tensor,
|
718 |
byte_position_ids: torch.Tensor,
|
719 |
-
|
720 |
word_position_id: torch.Tensor,
|
721 |
encoder_cache: DynamicCache,
|
722 |
decoder_cache: DynamicCache,
|
723 |
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
724 |
-
previous_encoder_activations: torch.Tensor | None = None,
|
725 |
):
|
726 |
"""Generate byte tokens until we hit the first byte of a new word."""
|
727 |
-
words
|
728 |
-
byte_encoder_activations
|
729 |
-
completion_logits
|
730 |
-
|
731 |
-
if previous_encoder_activations is not None:
|
732 |
-
# we need to pass all inputs in order to get the correct encoding/decoding by the splitter
|
733 |
-
# but only the last byte is used for the generation
|
734 |
-
# since the cache is already populated with the first word's activations
|
735 |
-
input_ids = input_ids[:, -1:]
|
736 |
|
737 |
while True:
|
738 |
encoder_output = self.encoder.forward(
|
@@ -744,7 +727,7 @@ class HATForCausalLM(PreTrainedModel):
|
|
744 |
)
|
745 |
byte_encoder_activations.append(encoder_output.hidden_states)
|
746 |
decoder_output = self.decoder.forward(
|
747 |
-
|
748 |
encoder_output.hidden_states,
|
749 |
byte_position_ids=None,
|
750 |
word_position_ids=word_position_id,
|
@@ -757,112 +740,22 @@ class HATForCausalLM(PreTrainedModel):
|
|
757 |
next_byte = int(sample_fn(logits).item())
|
758 |
words = self._append_byte(words, next_byte)
|
759 |
if len(words) > 1 or next_byte == self.eos_token_id:
|
760 |
-
byte_encoder_activations = torch.cat(byte_encoder_activations, dim=1)
|
761 |
-
first_word_encoder_activations, next_word_encoder_activations = self._split_encoder_activations(
|
762 |
-
byte_encoder_activations,
|
763 |
-
words,
|
764 |
-
previous_encoder_activations,
|
765 |
-
)
|
766 |
break
|
767 |
input_ids = torch.tensor([[next_byte]], dtype=input_ids.dtype, device=input_ids.device)
|
768 |
|
|
|
769 |
num_kv = encoder_cache.get_seq_length()
|
770 |
-
|
771 |
-
completion = sum(words, [])[-len(completion_logits) :]
|
772 |
-
if next_word_encoder_activations is not None:
|
773 |
-
start_idx = num_kv - first_word_encoder_activations.shape[1] - next_word_encoder_activations.shape[1]
|
774 |
-
end_idx = num_kv - next_word_encoder_activations.shape[1]
|
775 |
-
# We do not want to return the logits for the second word went into the mulitbyte starting character case
|
776 |
-
# When that happens we remove the logits and post-hoc fix the decoder cache and compute new logits
|
777 |
-
# This is breaking causality but we want to imitate uncached generation/training behavior
|
778 |
-
completion_logits = completion_logits[:-next_word_encoder_activations.shape[1]]
|
779 |
-
else:
|
780 |
-
start_idx = num_kv - first_word_encoder_activations.shape[1]
|
781 |
-
end_idx = num_kv
|
782 |
-
|
783 |
-
byte_position_ids = torch.arange(start_idx, end_idx, device=input_ids.device, dtype=torch.long).unsqueeze(0)
|
784 |
completed_word_embedding = self.encoder_connector.forward(
|
785 |
-
|
786 |
-
cumulative_seq_lengths_per_word=torch.tensor([0,
|
787 |
word_position_ids=word_position_id,
|
788 |
byte_position_ids=byte_position_ids,
|
789 |
)
|
790 |
|
791 |
-
|
792 |
-
|
793 |
-
return (
|
794 |
-
completion,
|
795 |
-
completed_word_embedding,
|
796 |
-
bytes_of_next_word,
|
797 |
-
byte_position_ids[:, -1].item() + 1,
|
798 |
-
completion_logits,
|
799 |
-
next_word_encoder_activations,
|
800 |
-
)
|
801 |
-
|
802 |
-
def _populate_cache(
|
803 |
-
self,
|
804 |
-
input_ids: torch.Tensor,
|
805 |
-
cumulative_seq_lengths_per_word: torch.Tensor,
|
806 |
-
byte_position_ids: torch.Tensor,
|
807 |
-
word_position_ids: torch.Tensor,
|
808 |
-
):
|
809 |
-
last_word_start = cumulative_seq_lengths_per_word[-2]
|
810 |
-
last_word_end = cumulative_seq_lengths_per_word[-1]
|
811 |
-
|
812 |
-
# Populate cache with everything except last word
|
813 |
-
initial_forward_output = self.forward(
|
814 |
-
input_ids=input_ids[:, :last_word_start],
|
815 |
-
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word[:-1],
|
816 |
-
byte_position_ids=byte_position_ids[:, :last_word_start],
|
817 |
-
word_position_ids=word_position_ids[:, :-1],
|
818 |
-
past_key_values=None,
|
819 |
-
use_cache=True,
|
820 |
-
)
|
821 |
-
return initial_forward_output, last_word_start, last_word_end
|
822 |
-
|
823 |
-
def _initialize_generation_state(
|
824 |
-
self,
|
825 |
-
input_ids: torch.Tensor,
|
826 |
-
max_new_tokens: int,
|
827 |
-
cumulative_seq_lengths_per_word: torch.Tensor,
|
828 |
-
byte_position_ids: torch.Tensor | None = None,
|
829 |
-
word_position_ids: torch.Tensor | None = None,
|
830 |
-
):
|
831 |
-
max_total_bytes = max_new_tokens + input_ids.shape[1]
|
832 |
-
if byte_position_ids is None:
|
833 |
-
byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
834 |
-
|
835 |
-
if word_position_ids is None:
|
836 |
-
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
837 |
-
|
838 |
-
initial_forward_output, last_word_start, last_word_end = self._populate_cache(
|
839 |
-
input_ids=input_ids,
|
840 |
-
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
841 |
-
byte_position_ids=byte_position_ids,
|
842 |
-
word_position_ids=word_position_ids,
|
843 |
-
)
|
844 |
-
|
845 |
-
completion_bytes: list[int] = []
|
846 |
-
completion_logits: list[torch.Tensor] = []
|
847 |
-
# Slice input_ids and byte_position_ids to only contain the last word for the generation loop
|
848 |
-
current_input_ids = input_ids[:, last_word_start:last_word_end]
|
849 |
-
next_byte_id = last_word_end.item() # Ensure this is an int
|
850 |
-
current_byte_position_ids = byte_position_ids[:, last_word_start:last_word_end]
|
851 |
-
current_word_position_id = word_position_ids[:, -1].unsqueeze(-1)
|
852 |
-
backbone_last_hidden_state = initial_forward_output.hidden_states[:, -1:, :]
|
853 |
-
next_word_encoder_activations = None
|
854 |
-
return (
|
855 |
-
initial_forward_output,
|
856 |
-
completion_bytes,
|
857 |
-
completion_logits,
|
858 |
-
current_input_ids,
|
859 |
-
next_byte_id,
|
860 |
-
current_byte_position_ids,
|
861 |
-
current_word_position_id,
|
862 |
-
backbone_last_hidden_state,
|
863 |
-
next_word_encoder_activations,
|
864 |
-
max_total_bytes,
|
865 |
-
)
|
866 |
|
867 |
def generate(
|
868 |
self,
|
@@ -898,20 +791,6 @@ class HATForCausalLM(PreTrainedModel):
|
|
898 |
completion_logits=completion_logits,
|
899 |
)
|
900 |
|
901 |
-
def _fix_decoder_cache(self, predictive_word_embeddings: torch.Tensor, encoder_activions: torch.Tensor, decoder_cache: DynamicCache, word_position_id: torch.Tensor):
|
902 |
-
decoder_cache.crop(decoder_cache.get_seq_length() - encoder_activions.shape[1])
|
903 |
-
real_decoder_logits = self.decoder.forward(
|
904 |
-
predictive_word_embeddings,
|
905 |
-
encoder_activions,
|
906 |
-
byte_position_ids=None,
|
907 |
-
word_position_ids=word_position_id,
|
908 |
-
past_key_values=decoder_cache,
|
909 |
-
).last_hidden_state
|
910 |
-
|
911 |
-
decoder_output = self.layer_norm(real_decoder_logits)
|
912 |
-
logits = self.lm_head(decoder_output)
|
913 |
-
return logits
|
914 |
-
|
915 |
@torch.no_grad()
|
916 |
def _generate_cached(
|
917 |
self,
|
@@ -923,35 +802,43 @@ class HATForCausalLM(PreTrainedModel):
|
|
923 |
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
924 |
stop_sequences: Sequence[str] | None = None,
|
925 |
):
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
941 |
-
byte_position_ids=byte_position_ids,
|
942 |
-
word_position_ids=word_position_ids,
|
|
|
|
|
943 |
)
|
944 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
945 |
while next_byte_id < max_total_bytes:
|
946 |
-
completion, completed_word_embedding,
|
947 |
input_ids=input_ids,
|
948 |
byte_position_ids=byte_position_ids,
|
949 |
-
|
950 |
word_position_id=word_position_id,
|
951 |
encoder_cache=initial_forward_output.past_key_values.get_encoder_cache(),
|
952 |
decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
|
953 |
sample_fn=sample_fn,
|
954 |
-
previous_encoder_activations=next_word_encoder_activations,
|
955 |
)
|
956 |
completion_logits.extend(next_completion_logits)
|
957 |
completion_bytes.extend(completion)
|
@@ -976,19 +863,11 @@ class HATForCausalLM(PreTrainedModel):
|
|
976 |
)
|
977 |
backbone_last_hidden_state = backbone_output.hidden_states[:, -1, :].unsqueeze(1)
|
978 |
|
979 |
-
|
980 |
-
if len(bytes_of_next_word) > 1:
|
981 |
-
real_decoder_logits = self._fix_decoder_cache(
|
982 |
-
predictive_word_embeddings=backbone_last_hidden_state,
|
983 |
-
encoder_activions=next_word_encoder_activations,
|
984 |
-
decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
|
985 |
-
word_position_id=word_position_id,
|
986 |
-
)
|
987 |
-
completion_logits.extend(real_decoder_logits)
|
988 |
-
|
989 |
-
input_ids = torch.tensor([bytes_of_next_word], dtype=input_ids.dtype, device=input_ids.device)
|
990 |
byte_position_ids = torch.tensor([[next_byte_id]], dtype=input_ids.dtype, device=input_ids.device)
|
|
|
991 |
|
|
|
992 |
completion_bytes = completion_bytes[:max_new_tokens]
|
993 |
completion_logits = torch.cat(completion_logits[:max_new_tokens], dim=0)
|
994 |
completion_text = self.splitter.decode(completion_bytes)
|
@@ -1003,7 +882,7 @@ class HATForCausalLM(PreTrainedModel):
|
|
1003 |
cumulative_seq_lengths_per_word: torch.Tensor,
|
1004 |
byte_position_ids: torch.Tensor | None = None,
|
1005 |
word_position_ids: torch.Tensor | None = None,
|
1006 |
-
sample_fn
|
1007 |
stop_sequences: Sequence[str] | None = None,
|
1008 |
):
|
1009 |
if byte_position_ids is None:
|
|
|
10 |
from transformers import PreTrainedModel
|
11 |
from transformers.cache_utils import Cache, DynamicCache
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
|
|
|
|
|
|
|
13 |
from transformers.utils import ModelOutput
|
14 |
|
15 |
from .config import (
|
|
|
20 |
TransformerHATModelConfig,
|
21 |
)
|
22 |
from .splitter import HATSplitter
|
23 |
+
from .norm import RMSNorm
|
24 |
+
from .transformer_backbone import (
|
25 |
+
LlamaDecoderLayer,
|
26 |
+
LlamaRotaryEmbedding,
|
27 |
+
)
|
28 |
|
29 |
try:
|
30 |
transformers_version = version("transformers")
|
|
|
38 |
return torch.argmax(logits, dim=-1)[:, -1]
|
39 |
|
40 |
|
41 |
+
LLAMA_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
42 |
+
You are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
43 |
+
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
|
|
44 |
|
45 |
|
46 |
class HATCache(Cache):
|
|
|
173 |
return activations
|
174 |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
class HATDecoderBlock(nn.Module):
|
177 |
def __init__(
|
178 |
self,
|
|
|
334 |
self.num_key_value_heads = cross_attention_config.attention_num_kv_heads
|
335 |
self.num_repeat_kv = cross_attention_config.num_attention_heads // cross_attention_config.attention_num_kv_heads
|
336 |
self.head_dim = hidden_size // self.num_heads
|
337 |
+
self.key_query_norm = cross_attention_config.key_query_norm
|
338 |
+
self.key_query_norm_per_head = cross_attention_config.key_query_norm_per_head
|
339 |
|
340 |
self.q_proj = nn.Linear(
|
341 |
in_features=hidden_size_q,
|
|
|
358 |
bias=False,
|
359 |
)
|
360 |
|
361 |
+
if self.key_query_norm:
|
362 |
+
if self.key_query_norm_per_head:
|
363 |
+
# Both query and key have head dim equal to self.hidden_size_per_attention_head
|
364 |
+
query_norm_dimensions = self.head_dim
|
365 |
+
key_norm_dimensions = self.head_dim
|
366 |
+
else:
|
367 |
+
# Query dimensions across head is equal to hidden_size but key dimensions are divided
|
368 |
+
# by self.num_repeat_kv
|
369 |
+
query_norm_dimensions = self.hidden_size
|
370 |
+
key_norm_dimensions = self.hidden_size // self.num_repeat_kv
|
371 |
+
|
372 |
+
self.norm_query = RMSNorm(
|
373 |
+
dimensions=query_norm_dimensions,
|
374 |
+
eps=config.rms_norm_eps,
|
375 |
+
device=self.q_proj.weight.device,
|
376 |
+
dtype=dtype,
|
377 |
+
)
|
378 |
+
self.norm_key = RMSNorm(
|
379 |
+
dimensions=key_norm_dimensions,
|
380 |
+
eps=config.rms_norm_eps,
|
381 |
+
device=self.q_proj.weight.device,
|
382 |
+
dtype=dtype,
|
383 |
+
)
|
384 |
+
|
385 |
self.o_proj = nn.Linear(in_features=hidden_size, out_features=hidden_size_q, dtype=dtype, bias=False)
|
386 |
|
387 |
rope_theta = config.rope_theta
|
|
|
408 |
key_states = self.k_proj(kv_activations)
|
409 |
value_states = self.v_proj(kv_activations)
|
410 |
|
411 |
+
if self.key_query_norm:
|
412 |
+
assert self.norm_query is not None
|
413 |
+
assert self.norm_key is not None
|
414 |
+
# query_states and key_states are bsz seq_len (h d)
|
415 |
+
if self.key_query_norm_per_head:
|
416 |
+
# for per head qk norm we need head dim to be the last dim
|
417 |
+
query_states = rearrange(
|
418 |
+
query_states,
|
419 |
+
"bsz seq_len (h d) -> bsz seq_len h d",
|
420 |
+
h=self.num_heads,
|
421 |
+
)
|
422 |
+
key_states = rearrange(
|
423 |
+
key_states,
|
424 |
+
"bsz seq_len (h d) -> bsz seq_len h d",
|
425 |
+
h=self.num_key_value_heads,
|
426 |
+
)
|
427 |
+
query_states = self.norm_query(query_states)
|
428 |
+
key_states = self.norm_key(key_states)
|
429 |
+
if self.key_query_norm_per_head:
|
430 |
+
query_states = rearrange(
|
431 |
+
query_states,
|
432 |
+
"bsz seq_len h d -> bsz seq_len (h d)",
|
433 |
+
)
|
434 |
+
key_states = rearrange(
|
435 |
+
key_states,
|
436 |
+
"bsz seq_len h d -> bsz seq_len (h d)",
|
437 |
+
)
|
438 |
+
|
439 |
# TODO get rid of the double rearrange, this is just for compatibility with scaling
|
440 |
query_states = rearrange(query_states, "bsz seq_len (h d) -> bsz h seq_len d", h=self.num_heads)
|
441 |
key_states = rearrange(
|
|
|
523 |
device=self.latent_query.device,
|
524 |
dtype=torch.int32,
|
525 |
)
|
|
|
526 |
word_embeddings = self.cross_attention_encoder_connector.forward(
|
527 |
q_activations=latent_query_repeated,
|
528 |
kv_activations=hidden_states,
|
|
|
642 |
backbone_past_key_values = past_key_values.get_backbone_cache() if past_key_values is not None else None
|
643 |
decoder_past_key_values = past_key_values.get_decoder_cache() if past_key_values is not None else None
|
644 |
|
645 |
+
encoder_output: BaseModelOutputWithPast = self.encoder(
|
646 |
input_ids=input_ids,
|
647 |
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
648 |
byte_position_ids=byte_position_ids,
|
|
|
652 |
)
|
653 |
byte_level_activations = encoder_output.hidden_states
|
654 |
|
655 |
+
encoder_connector_output = self.encoder_connector(
|
656 |
byte_level_activations,
|
657 |
cumulative_seq_lengths_per_word,
|
658 |
word_position_ids,
|
659 |
byte_position_ids,
|
660 |
)
|
661 |
+
backbone_output: CausalLMOutputWithPast = self.backbone(
|
662 |
hidden_states=encoder_connector_output,
|
663 |
position_ids=word_position_ids,
|
664 |
past_key_values=backbone_past_key_values,
|
|
|
693 |
def _append_byte(self, words: list[list[int]], token: int) -> list[list[int]]:
|
694 |
extended_last_word = words.pop() + [token]
|
695 |
try:
|
696 |
+
text = self.splitter.decode(extended_last_word, errors='strict', skip_special_tokens=False)
|
697 |
list_of_bytes = self.splitter.encode(text)
|
698 |
words.extend([list(word_in_bytes) for word_in_bytes in list_of_bytes])
|
699 |
except UnicodeDecodeError:
|
|
|
702 |
words.append(extended_last_word)
|
703 |
return words
|
704 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
def _complete_word(
|
706 |
self,
|
707 |
input_ids: torch.Tensor,
|
708 |
byte_position_ids: torch.Tensor,
|
709 |
+
backbone_word_prediction: torch.Tensor,
|
710 |
word_position_id: torch.Tensor,
|
711 |
encoder_cache: DynamicCache,
|
712 |
decoder_cache: DynamicCache,
|
713 |
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
|
|
714 |
):
|
715 |
"""Generate byte tokens until we hit the first byte of a new word."""
|
716 |
+
words = [input_ids.squeeze(0).tolist()]
|
717 |
+
byte_encoder_activations = []
|
718 |
+
completion_logits = []
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
|
720 |
while True:
|
721 |
encoder_output = self.encoder.forward(
|
|
|
727 |
)
|
728 |
byte_encoder_activations.append(encoder_output.hidden_states)
|
729 |
decoder_output = self.decoder.forward(
|
730 |
+
backbone_word_prediction,
|
731 |
encoder_output.hidden_states,
|
732 |
byte_position_ids=None,
|
733 |
word_position_ids=word_position_id,
|
|
|
740 |
next_byte = int(sample_fn(logits).item())
|
741 |
words = self._append_byte(words, next_byte)
|
742 |
if len(words) > 1 or next_byte == self.eos_token_id:
|
|
|
|
|
|
|
|
|
|
|
|
|
743 |
break
|
744 |
input_ids = torch.tensor([[next_byte]], dtype=input_ids.dtype, device=input_ids.device)
|
745 |
|
746 |
+
byte_encoder_activations = torch.cat(byte_encoder_activations, dim=1)
|
747 |
num_kv = encoder_cache.get_seq_length()
|
748 |
+
byte_position_ids = torch.arange(num_kv + 1 - byte_encoder_activations.shape[1], num_kv + 1, device=input_ids.device, dtype=torch.long).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
749 |
completed_word_embedding = self.encoder_connector.forward(
|
750 |
+
byte_encoder_activations,
|
751 |
+
cumulative_seq_lengths_per_word=torch.tensor([0, byte_encoder_activations.size(1)], dtype=torch.int32, device=input_ids.device),
|
752 |
word_position_ids=word_position_id,
|
753 |
byte_position_ids=byte_position_ids,
|
754 |
)
|
755 |
|
756 |
+
completion = sum(words, [])[-len(completion_logits) :]
|
757 |
+
first_byte_of_next_word = words[1]
|
758 |
+
return completion, completed_word_embedding, first_byte_of_next_word, byte_position_ids[:, -1].item() + 1, completion_logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
759 |
|
760 |
def generate(
|
761 |
self,
|
|
|
791 |
completion_logits=completion_logits,
|
792 |
)
|
793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
794 |
@torch.no_grad()
|
795 |
def _generate_cached(
|
796 |
self,
|
|
|
802 |
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
803 |
stop_sequences: Sequence[str] | None = None,
|
804 |
):
|
805 |
+
max_total_bytes = max_new_tokens + input_ids.shape[1]
|
806 |
+
if byte_position_ids is None:
|
807 |
+
byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
808 |
+
|
809 |
+
if word_position_ids is None:
|
810 |
+
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
811 |
+
|
812 |
+
last_word_start, last_word_end = (
|
813 |
+
cumulative_seq_lengths_per_word[-2],
|
814 |
+
cumulative_seq_lengths_per_word[-1],
|
815 |
+
)
|
816 |
+
# Populate cache with everything except last word
|
817 |
+
initial_forward_output = self.forward(
|
818 |
+
input_ids=input_ids[:, :last_word_start],
|
819 |
+
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word[:-1],
|
820 |
+
byte_position_ids=byte_position_ids[:, :last_word_start],
|
821 |
+
word_position_ids=word_position_ids[:, :-1],
|
822 |
+
past_key_values=None,
|
823 |
+
use_cache=True,
|
824 |
)
|
825 |
|
826 |
+
completion_bytes = []
|
827 |
+
completion_logits = []
|
828 |
+
input_ids = input_ids[:, last_word_start:last_word_end]
|
829 |
+
next_byte_id = last_word_end
|
830 |
+
byte_position_ids = byte_position_ids[:, last_word_start:last_word_end]
|
831 |
+
word_position_id = word_position_ids[:, -1].unsqueeze(-1)
|
832 |
+
backbone_last_hidden_state = initial_forward_output.hidden_states[:, -1:, :]
|
833 |
while next_byte_id < max_total_bytes:
|
834 |
+
completion, completed_word_embedding, first_byte_of_next_word, next_byte_id, next_completion_logits = self._complete_word(
|
835 |
input_ids=input_ids,
|
836 |
byte_position_ids=byte_position_ids,
|
837 |
+
backbone_word_prediction=backbone_last_hidden_state,
|
838 |
word_position_id=word_position_id,
|
839 |
encoder_cache=initial_forward_output.past_key_values.get_encoder_cache(),
|
840 |
decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
|
841 |
sample_fn=sample_fn,
|
|
|
842 |
)
|
843 |
completion_logits.extend(next_completion_logits)
|
844 |
completion_bytes.extend(completion)
|
|
|
863 |
)
|
864 |
backbone_last_hidden_state = backbone_output.hidden_states[:, -1, :].unsqueeze(1)
|
865 |
|
866 |
+
input_ids = torch.tensor([first_byte_of_next_word], dtype=input_ids.dtype, device=input_ids.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
867 |
byte_position_ids = torch.tensor([[next_byte_id]], dtype=input_ids.dtype, device=input_ids.device)
|
868 |
+
word_position_id = word_position_id + 1
|
869 |
|
870 |
+
completion_bytes.extend(first_byte_of_next_word)
|
871 |
completion_bytes = completion_bytes[:max_new_tokens]
|
872 |
completion_logits = torch.cat(completion_logits[:max_new_tokens], dim=0)
|
873 |
completion_text = self.splitter.decode(completion_bytes)
|
|
|
882 |
cumulative_seq_lengths_per_word: torch.Tensor,
|
883 |
byte_position_ids: torch.Tensor | None = None,
|
884 |
word_position_ids: torch.Tensor | None = None,
|
885 |
+
sample_fn=sample_argmax,
|
886 |
stop_sequences: Sequence[str] | None = None,
|
887 |
):
|
888 |
if byte_position_ids is None:
|
norm.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class RMSNorm(nn.Module):
|
5 |
+
def __init__(self, dimensions: int, eps: float, device: torch.device, dtype: torch.dtype = torch.bfloat16, norm_in_fp32: bool = False):
|
6 |
+
super().__init__()
|
7 |
+
self.eps = eps
|
8 |
+
self.weight = torch.nn.Parameter(torch.ones(dimensions, dtype=dtype).to(device))
|
9 |
+
self.norm_in_fp32 = norm_in_fp32
|
10 |
+
|
11 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
12 |
+
original_dtype = x.dtype
|
13 |
+
if self.norm_in_fp32:
|
14 |
+
x = x.float()
|
15 |
+
|
16 |
+
out = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
17 |
+
|
18 |
+
if out.dtype != original_dtype:
|
19 |
+
out = out.to(original_dtype)
|
20 |
+
|
21 |
+
return out * self.weight
|
splitter.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import re
|
|
|
2 |
from hat_splitter import HATSplitter as RustHATSplitter
|
3 |
|
4 |
|
@@ -7,15 +8,8 @@ class HATSplitter:
|
|
7 |
self.hat_splitter = RustHATSplitter()
|
8 |
self.max_word_size = max_word_size
|
9 |
self.special_token_dict = special_token_dict
|
10 |
-
self.special_token_replace: dict[int, list[int]] = {
|
11 |
-
|
12 |
-
}
|
13 |
-
self.special_token_pattern = (
|
14 |
-
re.compile(rf"({'|'.join(map(re.escape, special_token_dict.keys()))})")
|
15 |
-
if special_token_dict
|
16 |
-
else re.compile(r"(?!)")
|
17 |
-
)
|
18 |
-
|
19 |
|
20 |
def encode(self, text: str) -> list[list[int]]:
|
21 |
chunks = []
|
@@ -26,7 +20,7 @@ class HATSplitter:
|
|
26 |
else:
|
27 |
chunks.extend(list(chunk) for chunk in self.hat_splitter.split_with_limit(str_chunk, self.max_word_size))
|
28 |
return chunks
|
29 |
-
|
30 |
def decode(self, token_ids: list[int], errors: str = "replace", skip_special_tokens: bool = False) -> str:
|
31 |
assert isinstance(token_ids, list), "token_ids must be a list"
|
32 |
assert all(isinstance(token_id, int) for token_id in token_ids), "token_ids must be a list of integers"
|
|
|
1 |
import re
|
2 |
+
|
3 |
from hat_splitter import HATSplitter as RustHATSplitter
|
4 |
|
5 |
|
|
|
8 |
self.hat_splitter = RustHATSplitter()
|
9 |
self.max_word_size = max_word_size
|
10 |
self.special_token_dict = special_token_dict
|
11 |
+
self.special_token_replace: dict[int, list[int]] = {token: list(text.encode("utf-8")) for text, token in self.special_token_dict.items()}
|
12 |
+
self.special_token_pattern = re.compile(rf"({'|'.join(map(re.escape, special_token_dict.keys()))})") if special_token_dict else re.compile(r"(?!)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def encode(self, text: str) -> list[list[int]]:
|
15 |
chunks = []
|
|
|
20 |
else:
|
21 |
chunks.extend(list(chunk) for chunk in self.hat_splitter.split_with_limit(str_chunk, self.max_word_size))
|
22 |
return chunks
|
23 |
+
|
24 |
def decode(self, token_ids: list[int], errors: str = "replace", skip_special_tokens: bool = False) -> str:
|
25 |
assert isinstance(token_ids, list), "token_ids must be a list"
|
26 |
assert all(isinstance(token_id, int) for token_id in token_ids), "token_ids must be a list of integers"
|
transformer_backbone.py
ADDED
@@ -0,0 +1,1553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hacked in QK norm in LlamaDecoderLayer in transformers; keeping the version from
|
2 |
+
# transformers==4.46.3 since this keeps rotary within the decoder layer
|
3 |
+
# Source: https://github.com/huggingface/transformers/blob/v4.46.3/src/transformers/models/llama/modeling_llama.py#L400
|
4 |
+
|
5 |
+
# coding=utf-8
|
6 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
7 |
+
#
|
8 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
9 |
+
# and OPT implementations in this library. It has been modified from its
|
10 |
+
# original forms to accommodate minor architectural differences compared
|
11 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
12 |
+
#
|
13 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
14 |
+
# you may not use this file except in compliance with the License.
|
15 |
+
# You may obtain a copy of the License at
|
16 |
+
#
|
17 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
18 |
+
#
|
19 |
+
# Unless required by applicable law or agreed to in writing, software
|
20 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
21 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
22 |
+
# See the License for the specific language governing permissions and
|
23 |
+
# limitations under the License.
|
24 |
+
import math
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch import nn
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
34 |
+
from transformers.generation import GenerationMixin
|
35 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
36 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
37 |
+
from transformers.modeling_outputs import (
|
38 |
+
BaseModelOutputWithPast,
|
39 |
+
CausalLMOutputWithPast,
|
40 |
+
QuestionAnsweringModelOutput,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
TokenClassifierOutput,
|
43 |
+
)
|
44 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
45 |
+
from transformers.modeling_utils import PreTrainedModel
|
46 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
47 |
+
from transformers.utils import (
|
48 |
+
add_code_sample_docstrings,
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
is_flash_attn_greater_or_equal_2_10,
|
52 |
+
logging,
|
53 |
+
replace_return_docstrings,
|
54 |
+
)
|
55 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
56 |
+
|
57 |
+
from .norm import RMSNorm
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CHECKPOINT_FOR_DOC = "meta-llama/Llama-2-7b-hf"
|
62 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
63 |
+
|
64 |
+
|
65 |
+
class LlamaRMSNorm(nn.Module):
|
66 |
+
def __init__(self, hidden_size, eps=1e-6):
|
67 |
+
"""
|
68 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
69 |
+
"""
|
70 |
+
super().__init__()
|
71 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
72 |
+
self.variance_epsilon = eps
|
73 |
+
|
74 |
+
def forward(self, hidden_states):
|
75 |
+
input_dtype = hidden_states.dtype
|
76 |
+
hidden_states = hidden_states.to(torch.float32)
|
77 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
78 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
79 |
+
return self.weight * hidden_states.to(input_dtype)
|
80 |
+
|
81 |
+
def extra_repr(self):
|
82 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
83 |
+
|
84 |
+
|
85 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
86 |
+
|
87 |
+
|
88 |
+
class LlamaRotaryEmbedding(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
dim=None,
|
92 |
+
max_position_embeddings=2048,
|
93 |
+
base=10000,
|
94 |
+
device=None,
|
95 |
+
scaling_factor=1.0,
|
96 |
+
rope_type="default",
|
97 |
+
config: Optional[LlamaConfig] = None,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
# TODO (joao): remove the `if` below, only used for BC
|
101 |
+
self.rope_kwargs = {}
|
102 |
+
if config is None:
|
103 |
+
logger.warning_once(
|
104 |
+
"`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
105 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
106 |
+
)
|
107 |
+
self.rope_kwargs = {
|
108 |
+
"rope_type": rope_type,
|
109 |
+
"factor": scaling_factor,
|
110 |
+
"dim": dim,
|
111 |
+
"base": base,
|
112 |
+
"max_position_embeddings": max_position_embeddings,
|
113 |
+
}
|
114 |
+
self.rope_type = rope_type
|
115 |
+
self.max_seq_len_cached = max_position_embeddings
|
116 |
+
self.original_max_seq_len = max_position_embeddings
|
117 |
+
else:
|
118 |
+
# BC: "rope_type" was originally "type"
|
119 |
+
if config.rope_scaling is not None:
|
120 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
121 |
+
else:
|
122 |
+
self.rope_type = "default"
|
123 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
124 |
+
self.original_max_seq_len = config.max_position_embeddings
|
125 |
+
|
126 |
+
self.config = config
|
127 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
128 |
+
|
129 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
130 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
131 |
+
self.original_inv_freq = self.inv_freq
|
132 |
+
|
133 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
134 |
+
"""
|
135 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
136 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
137 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
138 |
+
"""
|
139 |
+
seq_len = torch.max(position_ids) + 1
|
140 |
+
if seq_len > self.max_seq_len_cached: # growth
|
141 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
142 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
143 |
+
)
|
144 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
145 |
+
self.max_seq_len_cached = seq_len
|
146 |
+
|
147 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
148 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
149 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def forward(self, x, position_ids):
|
153 |
+
if "dynamic" in self.rope_type:
|
154 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
155 |
+
|
156 |
+
# Core RoPE block
|
157 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
158 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
159 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
160 |
+
device_type = x.device.type
|
161 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
162 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
163 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
164 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
165 |
+
cos = emb.cos()
|
166 |
+
sin = emb.sin()
|
167 |
+
|
168 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
169 |
+
cos = cos * self.attention_scaling
|
170 |
+
sin = sin * self.attention_scaling
|
171 |
+
|
172 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
173 |
+
|
174 |
+
|
175 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
176 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
177 |
+
|
178 |
+
def __init__(self, *args, **kwargs):
|
179 |
+
logger.warning_once(
|
180 |
+
"`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
181 |
+
"`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
182 |
+
)
|
183 |
+
kwargs["rope_type"] = "linear"
|
184 |
+
super().__init__(*args, **kwargs)
|
185 |
+
|
186 |
+
|
187 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
188 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
189 |
+
|
190 |
+
def __init__(self, *args, **kwargs):
|
191 |
+
logger.warning_once(
|
192 |
+
"`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
193 |
+
"`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
194 |
+
"__init__)."
|
195 |
+
)
|
196 |
+
kwargs["rope_type"] = "dynamic"
|
197 |
+
super().__init__(*args, **kwargs)
|
198 |
+
|
199 |
+
|
200 |
+
def rotate_half(x):
|
201 |
+
"""Rotates half the hidden dims of the input."""
|
202 |
+
x1 = x[..., : x.shape[-1] // 2]
|
203 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
204 |
+
return torch.cat((-x2, x1), dim=-1)
|
205 |
+
|
206 |
+
|
207 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
208 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
q (`torch.Tensor`): The query tensor.
|
212 |
+
k (`torch.Tensor`): The key tensor.
|
213 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
214 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
215 |
+
position_ids (`torch.Tensor`, *optional*):
|
216 |
+
Deprecated and unused.
|
217 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
218 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
219 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
220 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
221 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
222 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
223 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
224 |
+
Returns:
|
225 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
226 |
+
"""
|
227 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
228 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
229 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
230 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
231 |
+
return q_embed, k_embed
|
232 |
+
|
233 |
+
|
234 |
+
class LlamaMLP(nn.Module):
|
235 |
+
def __init__(self, config):
|
236 |
+
super().__init__()
|
237 |
+
self.config = config
|
238 |
+
self.hidden_size = config.hidden_size
|
239 |
+
self.intermediate_size = config.intermediate_size
|
240 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
241 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
242 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
243 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
244 |
+
|
245 |
+
def forward(self, x):
|
246 |
+
if self.config.pretraining_tp > 1:
|
247 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
248 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
249 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
250 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
251 |
+
|
252 |
+
gate_proj = torch.cat(
|
253 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
254 |
+
)
|
255 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
256 |
+
|
257 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
258 |
+
down_proj = [
|
259 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
260 |
+
]
|
261 |
+
down_proj = sum(down_proj)
|
262 |
+
else:
|
263 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
264 |
+
|
265 |
+
return down_proj
|
266 |
+
|
267 |
+
|
268 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
269 |
+
"""
|
270 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
271 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
272 |
+
"""
|
273 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
274 |
+
if n_rep == 1:
|
275 |
+
return hidden_states
|
276 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
277 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
278 |
+
|
279 |
+
|
280 |
+
class LlamaAttention(nn.Module):
|
281 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
282 |
+
|
283 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
284 |
+
super().__init__()
|
285 |
+
self.config = config
|
286 |
+
self.layer_idx = layer_idx
|
287 |
+
if layer_idx is None:
|
288 |
+
logger.warning_once(
|
289 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
290 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
291 |
+
"when creating this class."
|
292 |
+
)
|
293 |
+
|
294 |
+
self.attention_dropout = config.attention_dropout
|
295 |
+
self.hidden_size = config.hidden_size
|
296 |
+
self.num_heads = config.num_attention_heads
|
297 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
298 |
+
self.num_key_value_heads = config.num_key_value_heads
|
299 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
300 |
+
self.max_position_embeddings = config.max_position_embeddings
|
301 |
+
self.rope_theta = config.rope_theta
|
302 |
+
self.is_causal = True
|
303 |
+
self.key_query_norm = config.key_query_norm
|
304 |
+
self.key_query_norm_per_head = config.key_query_norm_per_head
|
305 |
+
|
306 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
307 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
308 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
309 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
310 |
+
|
311 |
+
if self.key_query_norm:
|
312 |
+
if self.key_query_norm_per_head:
|
313 |
+
# Both query and key have head dim equal to self.hidden_size_per_attention_head
|
314 |
+
query_norm_dimensions = self.head_dim
|
315 |
+
key_norm_dimensions = self.head_dim
|
316 |
+
else:
|
317 |
+
# Query dimensions across head is equal to hidden_size but key dimensions are divided
|
318 |
+
# by self.num_repeat_kv
|
319 |
+
query_norm_dimensions = self.hidden_size
|
320 |
+
key_norm_dimensions = self.hidden_size // self.num_repeat_kv
|
321 |
+
|
322 |
+
# For numerical compatibility we use RMSNorm as it was used during training
|
323 |
+
self.norm_query = RMSNorm(
|
324 |
+
dimensions=query_norm_dimensions,
|
325 |
+
eps=config.rms_norm_eps,
|
326 |
+
device=self.q_proj.weight.device,
|
327 |
+
dtype=self.q_proj.weight.dtype,
|
328 |
+
)
|
329 |
+
self.norm_key = RMSNorm(
|
330 |
+
dimensions=key_norm_dimensions,
|
331 |
+
eps=config.rms_norm_eps,
|
332 |
+
device=self.q_proj.weight.device,
|
333 |
+
dtype=self.q_proj.weight.dtype,
|
334 |
+
)
|
335 |
+
|
336 |
+
# TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
|
337 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states: torch.Tensor,
|
342 |
+
attention_mask: Optional[torch.Tensor] = None,
|
343 |
+
position_ids: Optional[torch.LongTensor] = None,
|
344 |
+
past_key_value: Optional[Cache] = None,
|
345 |
+
output_attentions: bool = False,
|
346 |
+
use_cache: bool = False,
|
347 |
+
cache_position: Optional[torch.LongTensor] = None,
|
348 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
349 |
+
**kwargs,
|
350 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
351 |
+
bsz, q_len, _ = hidden_states.size()
|
352 |
+
|
353 |
+
if self.key_query_norm:
|
354 |
+
raise ValueError("QK norm not supported for eager attention, use flash_attention_2!")
|
355 |
+
|
356 |
+
if self.config.pretraining_tp > 1:
|
357 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
358 |
+
query_slices = self.q_proj.weight.split(
|
359 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
360 |
+
)
|
361 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
362 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
363 |
+
|
364 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
365 |
+
query_states = torch.cat(query_states, dim=-1)
|
366 |
+
|
367 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
368 |
+
key_states = torch.cat(key_states, dim=-1)
|
369 |
+
|
370 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
371 |
+
value_states = torch.cat(value_states, dim=-1)
|
372 |
+
|
373 |
+
else:
|
374 |
+
query_states = self.q_proj(hidden_states)
|
375 |
+
key_states = self.k_proj(hidden_states)
|
376 |
+
value_states = self.v_proj(hidden_states)
|
377 |
+
|
378 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
379 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
380 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
381 |
+
|
382 |
+
if position_embeddings is None:
|
383 |
+
logger.warning_once(
|
384 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
385 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
386 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
387 |
+
"removed and `position_embeddings` will be mandatory."
|
388 |
+
)
|
389 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
390 |
+
else:
|
391 |
+
cos, sin = position_embeddings
|
392 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
393 |
+
|
394 |
+
if past_key_value is not None:
|
395 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
396 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
397 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
398 |
+
|
399 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
400 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
401 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
402 |
+
|
403 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
404 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
405 |
+
attn_weights = attn_weights + causal_mask
|
406 |
+
|
407 |
+
# upcast attention to fp32
|
408 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
409 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
410 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
411 |
+
|
412 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
413 |
+
raise ValueError(
|
414 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
415 |
+
f" {attn_output.size()}"
|
416 |
+
)
|
417 |
+
|
418 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
419 |
+
|
420 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
421 |
+
|
422 |
+
if self.config.pretraining_tp > 1:
|
423 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
424 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
425 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
426 |
+
else:
|
427 |
+
attn_output = self.o_proj(attn_output)
|
428 |
+
|
429 |
+
if not output_attentions:
|
430 |
+
attn_weights = None
|
431 |
+
|
432 |
+
return attn_output, attn_weights, past_key_value
|
433 |
+
|
434 |
+
|
435 |
+
class LlamaFlashAttention2(LlamaAttention):
|
436 |
+
"""
|
437 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
438 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
439 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
440 |
+
"""
|
441 |
+
|
442 |
+
def __init__(self, *args, **kwargs):
|
443 |
+
super().__init__(*args, **kwargs)
|
444 |
+
|
445 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
446 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
447 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
448 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
449 |
+
|
450 |
+
def forward(
|
451 |
+
self,
|
452 |
+
hidden_states: torch.Tensor,
|
453 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
454 |
+
position_ids: Optional[torch.LongTensor] = None,
|
455 |
+
past_key_value: Optional[Cache] = None,
|
456 |
+
output_attentions: bool = False,
|
457 |
+
use_cache: bool = False,
|
458 |
+
cache_position: Optional[torch.LongTensor] = None,
|
459 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
460 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
461 |
+
if isinstance(past_key_value, StaticCache):
|
462 |
+
raise ValueError(
|
463 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
464 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
465 |
+
)
|
466 |
+
|
467 |
+
output_attentions = False
|
468 |
+
|
469 |
+
bsz, q_len, _ = hidden_states.size()
|
470 |
+
|
471 |
+
query_states = self.q_proj(hidden_states)
|
472 |
+
key_states = self.k_proj(hidden_states)
|
473 |
+
value_states = self.v_proj(hidden_states)
|
474 |
+
|
475 |
+
if self.key_query_norm:
|
476 |
+
if not self.key_query_norm_per_head:
|
477 |
+
# norm the full hidden fdim
|
478 |
+
query_states = self.norm_query(query_states)
|
479 |
+
key_states = self.norm_key(key_states)
|
480 |
+
|
481 |
+
|
482 |
+
# Flash attention requires the input to have the shape
|
483 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
484 |
+
# therefore we just need to keep the original shape
|
485 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
486 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
487 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
488 |
+
|
489 |
+
if self.key_query_norm:
|
490 |
+
if self.key_query_norm_per_head:
|
491 |
+
# norm each head (with shared weights)
|
492 |
+
query_states = self.norm_query(query_states)
|
493 |
+
key_states = self.norm_key(key_states)
|
494 |
+
|
495 |
+
if position_embeddings is None:
|
496 |
+
logger.warning_once(
|
497 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
498 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
499 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
500 |
+
"removed and `position_embeddings` will be mandatory."
|
501 |
+
)
|
502 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
503 |
+
else:
|
504 |
+
cos, sin = position_embeddings
|
505 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
506 |
+
|
507 |
+
if past_key_value is not None:
|
508 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
509 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
510 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
511 |
+
|
512 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
513 |
+
# to be able to avoid many of these transpose/reshape/view.
|
514 |
+
query_states = query_states.transpose(1, 2)
|
515 |
+
key_states = key_states.transpose(1, 2)
|
516 |
+
value_states = value_states.transpose(1, 2)
|
517 |
+
|
518 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
519 |
+
|
520 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
521 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
522 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
523 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
524 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
525 |
+
|
526 |
+
input_dtype = query_states.dtype
|
527 |
+
if input_dtype == torch.float32:
|
528 |
+
if torch.is_autocast_enabled():
|
529 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
530 |
+
# Handle the case where the model is quantized
|
531 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
532 |
+
target_dtype = self.config._pre_quantization_dtype
|
533 |
+
else:
|
534 |
+
target_dtype = self.q_proj.weight.dtype
|
535 |
+
|
536 |
+
logger.warning_once(
|
537 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
538 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
539 |
+
f" {target_dtype}."
|
540 |
+
)
|
541 |
+
|
542 |
+
query_states = query_states.to(target_dtype)
|
543 |
+
key_states = key_states.to(target_dtype)
|
544 |
+
value_states = value_states.to(target_dtype)
|
545 |
+
|
546 |
+
attn_output = _flash_attention_forward(
|
547 |
+
query_states,
|
548 |
+
key_states,
|
549 |
+
value_states,
|
550 |
+
attention_mask,
|
551 |
+
q_len,
|
552 |
+
position_ids=position_ids,
|
553 |
+
dropout=dropout_rate,
|
554 |
+
sliding_window=getattr(self, "sliding_window", None),
|
555 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
556 |
+
is_causal=self.is_causal,
|
557 |
+
)
|
558 |
+
|
559 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
560 |
+
attn_output = self.o_proj(attn_output)
|
561 |
+
|
562 |
+
if not output_attentions:
|
563 |
+
attn_weights = None
|
564 |
+
|
565 |
+
return attn_output, attn_weights, past_key_value
|
566 |
+
|
567 |
+
|
568 |
+
class LlamaSdpaAttention(LlamaAttention):
|
569 |
+
"""
|
570 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
571 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
572 |
+
SDPA API.
|
573 |
+
"""
|
574 |
+
|
575 |
+
# Adapted from LlamaAttention.forward
|
576 |
+
def forward(
|
577 |
+
self,
|
578 |
+
hidden_states: torch.Tensor,
|
579 |
+
attention_mask: Optional[torch.Tensor] = None,
|
580 |
+
position_ids: Optional[torch.LongTensor] = None,
|
581 |
+
past_key_value: Optional[Cache] = None,
|
582 |
+
output_attentions: bool = False,
|
583 |
+
use_cache: bool = False,
|
584 |
+
cache_position: Optional[torch.LongTensor] = None,
|
585 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
586 |
+
**kwargs,
|
587 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
588 |
+
if output_attentions:
|
589 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
590 |
+
logger.warning_once(
|
591 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
592 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
593 |
+
)
|
594 |
+
return super().forward(
|
595 |
+
hidden_states=hidden_states,
|
596 |
+
attention_mask=attention_mask,
|
597 |
+
position_ids=position_ids,
|
598 |
+
past_key_value=past_key_value,
|
599 |
+
output_attentions=output_attentions,
|
600 |
+
use_cache=use_cache,
|
601 |
+
cache_position=cache_position,
|
602 |
+
position_embeddings=position_embeddings,
|
603 |
+
)
|
604 |
+
|
605 |
+
bsz, q_len, _ = hidden_states.size()
|
606 |
+
|
607 |
+
query_states = self.q_proj(hidden_states)
|
608 |
+
key_states = self.k_proj(hidden_states)
|
609 |
+
value_states = self.v_proj(hidden_states)
|
610 |
+
|
611 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
612 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
613 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
614 |
+
|
615 |
+
if position_embeddings is None:
|
616 |
+
logger.warning_once(
|
617 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
618 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
619 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
620 |
+
"removed and `position_embeddings` will be mandatory."
|
621 |
+
)
|
622 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
623 |
+
else:
|
624 |
+
cos, sin = position_embeddings
|
625 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
626 |
+
|
627 |
+
if past_key_value is not None:
|
628 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
629 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
630 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
631 |
+
|
632 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
633 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
634 |
+
|
635 |
+
causal_mask = attention_mask
|
636 |
+
if attention_mask is not None:
|
637 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
638 |
+
|
639 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
640 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
641 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
642 |
+
query_states = query_states.contiguous()
|
643 |
+
key_states = key_states.contiguous()
|
644 |
+
value_states = value_states.contiguous()
|
645 |
+
|
646 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
647 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
648 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
649 |
+
|
650 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
651 |
+
query_states,
|
652 |
+
key_states,
|
653 |
+
value_states,
|
654 |
+
attn_mask=causal_mask,
|
655 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
656 |
+
is_causal=is_causal,
|
657 |
+
)
|
658 |
+
|
659 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
660 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
661 |
+
|
662 |
+
attn_output = self.o_proj(attn_output)
|
663 |
+
|
664 |
+
return attn_output, None, past_key_value
|
665 |
+
|
666 |
+
|
667 |
+
LLAMA_ATTENTION_CLASSES = {
|
668 |
+
"eager": LlamaAttention,
|
669 |
+
"flash_attention_2": LlamaFlashAttention2,
|
670 |
+
"sdpa": LlamaSdpaAttention,
|
671 |
+
}
|
672 |
+
|
673 |
+
|
674 |
+
class LlamaDecoderLayer(nn.Module):
|
675 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
676 |
+
super().__init__()
|
677 |
+
self.hidden_size = config.hidden_size
|
678 |
+
|
679 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
680 |
+
|
681 |
+
self.mlp = LlamaMLP(config)
|
682 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
683 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
684 |
+
|
685 |
+
def forward(
|
686 |
+
self,
|
687 |
+
hidden_states: torch.Tensor,
|
688 |
+
attention_mask: Optional[torch.Tensor] = None,
|
689 |
+
position_ids: Optional[torch.LongTensor] = None,
|
690 |
+
past_key_value: Optional[Cache] = None,
|
691 |
+
output_attentions: Optional[bool] = False,
|
692 |
+
use_cache: Optional[bool] = False,
|
693 |
+
cache_position: Optional[torch.LongTensor] = None,
|
694 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
695 |
+
**kwargs,
|
696 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
697 |
+
"""
|
698 |
+
Args:
|
699 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
700 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
701 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
702 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
703 |
+
output_attentions (`bool`, *optional*):
|
704 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
705 |
+
returned tensors for more detail.
|
706 |
+
use_cache (`bool`, *optional*):
|
707 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
708 |
+
(see `past_key_values`).
|
709 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
710 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
711 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
712 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
713 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
714 |
+
with `head_dim` being the embedding dimension of each attention head.
|
715 |
+
kwargs (`dict`, *optional*):
|
716 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
717 |
+
into the model
|
718 |
+
"""
|
719 |
+
residual = hidden_states
|
720 |
+
|
721 |
+
hidden_states = self.input_layernorm(hidden_states)
|
722 |
+
|
723 |
+
# Self Attention
|
724 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
725 |
+
hidden_states=hidden_states,
|
726 |
+
attention_mask=attention_mask,
|
727 |
+
position_ids=position_ids,
|
728 |
+
past_key_value=past_key_value,
|
729 |
+
output_attentions=output_attentions,
|
730 |
+
use_cache=use_cache,
|
731 |
+
cache_position=cache_position,
|
732 |
+
position_embeddings=position_embeddings,
|
733 |
+
**kwargs,
|
734 |
+
)
|
735 |
+
hidden_states = residual + hidden_states
|
736 |
+
|
737 |
+
# Fully Connected
|
738 |
+
residual = hidden_states
|
739 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
740 |
+
hidden_states = self.mlp(hidden_states)
|
741 |
+
hidden_states = residual + hidden_states
|
742 |
+
|
743 |
+
outputs = (hidden_states,)
|
744 |
+
|
745 |
+
if output_attentions:
|
746 |
+
outputs += (self_attn_weights,)
|
747 |
+
|
748 |
+
if use_cache:
|
749 |
+
outputs += (present_key_value,)
|
750 |
+
|
751 |
+
return outputs
|
752 |
+
|
753 |
+
|
754 |
+
LLAMA_START_DOCSTRING = r"""
|
755 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
756 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
757 |
+
etc.)
|
758 |
+
|
759 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
760 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
761 |
+
and behavior.
|
762 |
+
|
763 |
+
Parameters:
|
764 |
+
config ([`LlamaConfig`]):
|
765 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
766 |
+
load the weights associated with the model, only the configuration. Check out the
|
767 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
768 |
+
"""
|
769 |
+
|
770 |
+
|
771 |
+
@add_start_docstrings(
|
772 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
773 |
+
LLAMA_START_DOCSTRING,
|
774 |
+
)
|
775 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
776 |
+
config_class = LlamaConfig
|
777 |
+
base_model_prefix = "model"
|
778 |
+
supports_gradient_checkpointing = True
|
779 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
780 |
+
_skip_keys_device_placement = ["past_key_values"]
|
781 |
+
_supports_flash_attn_2 = True
|
782 |
+
_supports_sdpa = True
|
783 |
+
_supports_cache_class = True
|
784 |
+
_supports_quantized_cache = True
|
785 |
+
_supports_static_cache = True
|
786 |
+
|
787 |
+
def _init_weights(self, module):
|
788 |
+
std = self.config.initializer_range
|
789 |
+
if isinstance(module, nn.Linear):
|
790 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
791 |
+
if module.bias is not None:
|
792 |
+
module.bias.data.zero_()
|
793 |
+
elif isinstance(module, nn.Embedding):
|
794 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
795 |
+
if module.padding_idx is not None:
|
796 |
+
module.weight.data[module.padding_idx].zero_()
|
797 |
+
|
798 |
+
|
799 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
800 |
+
Args:
|
801 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
802 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
803 |
+
it.
|
804 |
+
|
805 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
806 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
807 |
+
|
808 |
+
[What are input IDs?](../glossary#input-ids)
|
809 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
810 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
811 |
+
|
812 |
+
- 1 for tokens that are **not masked**,
|
813 |
+
- 0 for tokens that are **masked**.
|
814 |
+
|
815 |
+
[What are attention masks?](../glossary#attention-mask)
|
816 |
+
|
817 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
818 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
819 |
+
|
820 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
821 |
+
`past_key_values`).
|
822 |
+
|
823 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
824 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
825 |
+
information on the default strategy.
|
826 |
+
|
827 |
+
- 1 indicates the head is **not masked**,
|
828 |
+
- 0 indicates the head is **masked**.
|
829 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
830 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
831 |
+
config.n_positions - 1]`.
|
832 |
+
|
833 |
+
[What are position IDs?](../glossary#position-ids)
|
834 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
835 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
836 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
837 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
838 |
+
|
839 |
+
Two formats are allowed:
|
840 |
+
- a [`~cache_utils.Cache`] instance, see our
|
841 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
842 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
843 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
844 |
+
cache format.
|
845 |
+
|
846 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
847 |
+
legacy cache format will be returned.
|
848 |
+
|
849 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
850 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
851 |
+
of shape `(batch_size, sequence_length)`.
|
852 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
853 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
854 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
855 |
+
model's internal embedding lookup matrix.
|
856 |
+
use_cache (`bool`, *optional*):
|
857 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
858 |
+
`past_key_values`).
|
859 |
+
output_attentions (`bool`, *optional*):
|
860 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
861 |
+
tensors for more detail.
|
862 |
+
output_hidden_states (`bool`, *optional*):
|
863 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
864 |
+
more detail.
|
865 |
+
return_dict (`bool`, *optional*):
|
866 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
867 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
868 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
869 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
870 |
+
the complete sequence length.
|
871 |
+
"""
|
872 |
+
|
873 |
+
|
874 |
+
@add_start_docstrings(
|
875 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
876 |
+
LLAMA_START_DOCSTRING,
|
877 |
+
)
|
878 |
+
class LlamaModel(LlamaPreTrainedModel):
|
879 |
+
"""
|
880 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
881 |
+
|
882 |
+
Args:
|
883 |
+
config: LlamaConfig
|
884 |
+
"""
|
885 |
+
|
886 |
+
def __init__(self, config: LlamaConfig):
|
887 |
+
super().__init__(config)
|
888 |
+
self.padding_idx = config.pad_token_id
|
889 |
+
self.vocab_size = config.vocab_size
|
890 |
+
|
891 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
892 |
+
self.layers = nn.ModuleList(
|
893 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
894 |
+
)
|
895 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
896 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
897 |
+
self.gradient_checkpointing = False
|
898 |
+
|
899 |
+
# Initialize weights and apply final processing
|
900 |
+
self.post_init()
|
901 |
+
|
902 |
+
def get_input_embeddings(self):
|
903 |
+
return self.embed_tokens
|
904 |
+
|
905 |
+
def set_input_embeddings(self, value):
|
906 |
+
self.embed_tokens = value
|
907 |
+
|
908 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
909 |
+
def forward(
|
910 |
+
self,
|
911 |
+
input_ids: torch.LongTensor = None,
|
912 |
+
attention_mask: Optional[torch.Tensor] = None,
|
913 |
+
position_ids: Optional[torch.LongTensor] = None,
|
914 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
915 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
916 |
+
use_cache: Optional[bool] = None,
|
917 |
+
output_attentions: Optional[bool] = None,
|
918 |
+
output_hidden_states: Optional[bool] = None,
|
919 |
+
return_dict: Optional[bool] = None,
|
920 |
+
cache_position: Optional[torch.LongTensor] = None,
|
921 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
922 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
923 |
+
output_hidden_states = (
|
924 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
925 |
+
)
|
926 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
927 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
928 |
+
|
929 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
930 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
933 |
+
logger.warning_once(
|
934 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
935 |
+
)
|
936 |
+
use_cache = False
|
937 |
+
|
938 |
+
if inputs_embeds is None:
|
939 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
940 |
+
|
941 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
942 |
+
return_legacy_cache = False
|
943 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
944 |
+
return_legacy_cache = True
|
945 |
+
if past_key_values is None:
|
946 |
+
past_key_values = DynamicCache()
|
947 |
+
else:
|
948 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
949 |
+
logger.warning_once(
|
950 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
951 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
952 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
953 |
+
)
|
954 |
+
|
955 |
+
if cache_position is None:
|
956 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
957 |
+
cache_position = torch.arange(
|
958 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
959 |
+
)
|
960 |
+
if position_ids is None:
|
961 |
+
position_ids = cache_position.unsqueeze(0)
|
962 |
+
|
963 |
+
causal_mask = self._update_causal_mask(
|
964 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
965 |
+
)
|
966 |
+
hidden_states = inputs_embeds
|
967 |
+
|
968 |
+
# create position embeddings to be shared across the decoder layers
|
969 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
970 |
+
|
971 |
+
# decoder layers
|
972 |
+
all_hidden_states = () if output_hidden_states else None
|
973 |
+
all_self_attns = () if output_attentions else None
|
974 |
+
next_decoder_cache = None
|
975 |
+
|
976 |
+
for decoder_layer in self.layers:
|
977 |
+
if output_hidden_states:
|
978 |
+
all_hidden_states += (hidden_states,)
|
979 |
+
|
980 |
+
if self.gradient_checkpointing and self.training:
|
981 |
+
layer_outputs = self._gradient_checkpointing_func(
|
982 |
+
decoder_layer.__call__,
|
983 |
+
hidden_states,
|
984 |
+
causal_mask,
|
985 |
+
position_ids,
|
986 |
+
past_key_values,
|
987 |
+
output_attentions,
|
988 |
+
use_cache,
|
989 |
+
cache_position,
|
990 |
+
position_embeddings,
|
991 |
+
)
|
992 |
+
else:
|
993 |
+
layer_outputs = decoder_layer(
|
994 |
+
hidden_states,
|
995 |
+
attention_mask=causal_mask,
|
996 |
+
position_ids=position_ids,
|
997 |
+
past_key_value=past_key_values,
|
998 |
+
output_attentions=output_attentions,
|
999 |
+
use_cache=use_cache,
|
1000 |
+
cache_position=cache_position,
|
1001 |
+
position_embeddings=position_embeddings,
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
hidden_states = layer_outputs[0]
|
1005 |
+
|
1006 |
+
if use_cache:
|
1007 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1008 |
+
|
1009 |
+
if output_attentions:
|
1010 |
+
all_self_attns += (layer_outputs[1],)
|
1011 |
+
|
1012 |
+
hidden_states = self.norm(hidden_states)
|
1013 |
+
|
1014 |
+
# add hidden states from the last decoder layer
|
1015 |
+
if output_hidden_states:
|
1016 |
+
all_hidden_states += (hidden_states,)
|
1017 |
+
|
1018 |
+
next_cache = next_decoder_cache if use_cache else None
|
1019 |
+
if return_legacy_cache:
|
1020 |
+
next_cache = next_cache.to_legacy_cache()
|
1021 |
+
|
1022 |
+
if not return_dict:
|
1023 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1024 |
+
return BaseModelOutputWithPast(
|
1025 |
+
last_hidden_state=hidden_states,
|
1026 |
+
past_key_values=next_cache,
|
1027 |
+
hidden_states=all_hidden_states,
|
1028 |
+
attentions=all_self_attns,
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
def _update_causal_mask(
|
1032 |
+
self,
|
1033 |
+
attention_mask: torch.Tensor,
|
1034 |
+
input_tensor: torch.Tensor,
|
1035 |
+
cache_position: torch.Tensor,
|
1036 |
+
past_key_values: Cache,
|
1037 |
+
output_attentions: bool,
|
1038 |
+
):
|
1039 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1040 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1041 |
+
return attention_mask
|
1042 |
+
return None
|
1043 |
+
|
1044 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1045 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1046 |
+
# to infer the attention mask.
|
1047 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1048 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1049 |
+
|
1050 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1051 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1052 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1053 |
+
attention_mask,
|
1054 |
+
inputs_embeds=input_tensor,
|
1055 |
+
past_key_values_length=past_seen_tokens,
|
1056 |
+
is_training=self.training,
|
1057 |
+
):
|
1058 |
+
return None
|
1059 |
+
|
1060 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1061 |
+
sequence_length = input_tensor.shape[1]
|
1062 |
+
if using_static_cache:
|
1063 |
+
target_length = past_key_values.get_max_cache_shape()
|
1064 |
+
else:
|
1065 |
+
target_length = (
|
1066 |
+
attention_mask.shape[-1]
|
1067 |
+
if isinstance(attention_mask, torch.Tensor)
|
1068 |
+
else past_seen_tokens + sequence_length + 1
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1072 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
1073 |
+
attention_mask,
|
1074 |
+
sequence_length=sequence_length,
|
1075 |
+
target_length=target_length,
|
1076 |
+
dtype=dtype,
|
1077 |
+
device=device,
|
1078 |
+
cache_position=cache_position,
|
1079 |
+
batch_size=input_tensor.shape[0],
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
if (
|
1083 |
+
self.config._attn_implementation == "sdpa"
|
1084 |
+
and attention_mask is not None
|
1085 |
+
and attention_mask.device.type == "cuda"
|
1086 |
+
and not output_attentions
|
1087 |
+
):
|
1088 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1089 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1090 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1091 |
+
min_dtype = torch.finfo(dtype).min
|
1092 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1093 |
+
|
1094 |
+
return causal_mask
|
1095 |
+
|
1096 |
+
@staticmethod
|
1097 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1098 |
+
attention_mask: torch.Tensor,
|
1099 |
+
sequence_length: int,
|
1100 |
+
target_length: int,
|
1101 |
+
dtype: torch.dtype,
|
1102 |
+
device: torch.device,
|
1103 |
+
cache_position: torch.Tensor,
|
1104 |
+
batch_size: int,
|
1105 |
+
**kwargs,
|
1106 |
+
):
|
1107 |
+
"""
|
1108 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1109 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1110 |
+
|
1111 |
+
Args:
|
1112 |
+
attention_mask (`torch.Tensor`):
|
1113 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
1114 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
1115 |
+
sequence_length (`int`):
|
1116 |
+
The sequence length being processed.
|
1117 |
+
target_length (`int`):
|
1118 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
1119 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
1120 |
+
dtype (`torch.dtype`):
|
1121 |
+
The dtype to use for the 4D attention mask.
|
1122 |
+
device (`torch.device`):
|
1123 |
+
The device to plcae the 4D attention mask on.
|
1124 |
+
cache_position (`torch.Tensor`):
|
1125 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1126 |
+
batch_size (`torch.Tensor`):
|
1127 |
+
Batch size.
|
1128 |
+
"""
|
1129 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1130 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1131 |
+
causal_mask = attention_mask
|
1132 |
+
else:
|
1133 |
+
min_dtype = torch.finfo(dtype).min
|
1134 |
+
causal_mask = torch.full(
|
1135 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1136 |
+
)
|
1137 |
+
if sequence_length != 1:
|
1138 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1139 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1140 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1141 |
+
if attention_mask is not None:
|
1142 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1143 |
+
mask_length = attention_mask.shape[-1]
|
1144 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1145 |
+
padding_mask = padding_mask == 0
|
1146 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1147 |
+
padding_mask, min_dtype
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
return causal_mask
|
1151 |
+
|
1152 |
+
|
1153 |
+
class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
1154 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1155 |
+
|
1156 |
+
def __init__(self, config):
|
1157 |
+
super().__init__(config)
|
1158 |
+
self.model = LlamaModel(config)
|
1159 |
+
self.vocab_size = config.vocab_size
|
1160 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1161 |
+
|
1162 |
+
# Initialize weights and apply final processing
|
1163 |
+
self.post_init()
|
1164 |
+
|
1165 |
+
def get_input_embeddings(self):
|
1166 |
+
return self.model.embed_tokens
|
1167 |
+
|
1168 |
+
def set_input_embeddings(self, value):
|
1169 |
+
self.model.embed_tokens = value
|
1170 |
+
|
1171 |
+
def get_output_embeddings(self):
|
1172 |
+
return self.lm_head
|
1173 |
+
|
1174 |
+
def set_output_embeddings(self, new_embeddings):
|
1175 |
+
self.lm_head = new_embeddings
|
1176 |
+
|
1177 |
+
def set_decoder(self, decoder):
|
1178 |
+
self.model = decoder
|
1179 |
+
|
1180 |
+
def get_decoder(self):
|
1181 |
+
return self.model
|
1182 |
+
|
1183 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1184 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1185 |
+
def forward(
|
1186 |
+
self,
|
1187 |
+
input_ids: torch.LongTensor = None,
|
1188 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1189 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1190 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1191 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1192 |
+
labels: Optional[torch.LongTensor] = None,
|
1193 |
+
use_cache: Optional[bool] = None,
|
1194 |
+
output_attentions: Optional[bool] = None,
|
1195 |
+
output_hidden_states: Optional[bool] = None,
|
1196 |
+
return_dict: Optional[bool] = None,
|
1197 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1198 |
+
num_logits_to_keep: int = 0,
|
1199 |
+
**loss_kwargs,
|
1200 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1201 |
+
r"""
|
1202 |
+
Args:
|
1203 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1204 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1205 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1206 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1207 |
+
|
1208 |
+
num_logits_to_keep (`int`, *optional*):
|
1209 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1210 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1211 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1212 |
+
|
1213 |
+
Returns:
|
1214 |
+
|
1215 |
+
Example:
|
1216 |
+
|
1217 |
+
```python
|
1218 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1219 |
+
|
1220 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1221 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1222 |
+
|
1223 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1224 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1225 |
+
|
1226 |
+
>>> # Generate
|
1227 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1228 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1229 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1230 |
+
```"""
|
1231 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1232 |
+
output_hidden_states = (
|
1233 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1234 |
+
)
|
1235 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1236 |
+
|
1237 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1238 |
+
outputs = self.model(
|
1239 |
+
input_ids=input_ids,
|
1240 |
+
attention_mask=attention_mask,
|
1241 |
+
position_ids=position_ids,
|
1242 |
+
past_key_values=past_key_values,
|
1243 |
+
inputs_embeds=inputs_embeds,
|
1244 |
+
use_cache=use_cache,
|
1245 |
+
output_attentions=output_attentions,
|
1246 |
+
output_hidden_states=output_hidden_states,
|
1247 |
+
return_dict=return_dict,
|
1248 |
+
cache_position=cache_position,
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
hidden_states = outputs[0]
|
1252 |
+
if self.config.pretraining_tp > 1:
|
1253 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1254 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1255 |
+
logits = torch.cat(logits, dim=-1)
|
1256 |
+
else:
|
1257 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1258 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1259 |
+
|
1260 |
+
loss = None
|
1261 |
+
if labels is not None:
|
1262 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **loss_kwargs)
|
1263 |
+
|
1264 |
+
if not return_dict:
|
1265 |
+
output = (logits,) + outputs[1:]
|
1266 |
+
return (loss,) + output if loss is not None else output
|
1267 |
+
|
1268 |
+
return CausalLMOutputWithPast(
|
1269 |
+
loss=loss,
|
1270 |
+
logits=logits,
|
1271 |
+
past_key_values=outputs.past_key_values,
|
1272 |
+
hidden_states=outputs.hidden_states,
|
1273 |
+
attentions=outputs.attentions,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
|
1277 |
+
@add_start_docstrings(
|
1278 |
+
"""
|
1279 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1280 |
+
|
1281 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1282 |
+
(e.g. GPT-2) do.
|
1283 |
+
|
1284 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1285 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1286 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1287 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1288 |
+
each row of the batch).
|
1289 |
+
""",
|
1290 |
+
LLAMA_START_DOCSTRING,
|
1291 |
+
)
|
1292 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1293 |
+
def __init__(self, config):
|
1294 |
+
super().__init__(config)
|
1295 |
+
self.num_labels = config.num_labels
|
1296 |
+
self.model = LlamaModel(config)
|
1297 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1298 |
+
|
1299 |
+
# Initialize weights and apply final processing
|
1300 |
+
self.post_init()
|
1301 |
+
|
1302 |
+
def get_input_embeddings(self):
|
1303 |
+
return self.model.embed_tokens
|
1304 |
+
|
1305 |
+
def set_input_embeddings(self, value):
|
1306 |
+
self.model.embed_tokens = value
|
1307 |
+
|
1308 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1309 |
+
def forward(
|
1310 |
+
self,
|
1311 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1312 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1313 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1314 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1315 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1316 |
+
labels: Optional[torch.LongTensor] = None,
|
1317 |
+
use_cache: Optional[bool] = None,
|
1318 |
+
output_attentions: Optional[bool] = None,
|
1319 |
+
output_hidden_states: Optional[bool] = None,
|
1320 |
+
return_dict: Optional[bool] = None,
|
1321 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1322 |
+
r"""
|
1323 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1324 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1325 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1326 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1327 |
+
"""
|
1328 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1329 |
+
|
1330 |
+
transformer_outputs = self.model(
|
1331 |
+
input_ids,
|
1332 |
+
attention_mask=attention_mask,
|
1333 |
+
position_ids=position_ids,
|
1334 |
+
past_key_values=past_key_values,
|
1335 |
+
inputs_embeds=inputs_embeds,
|
1336 |
+
use_cache=use_cache,
|
1337 |
+
output_attentions=output_attentions,
|
1338 |
+
output_hidden_states=output_hidden_states,
|
1339 |
+
return_dict=return_dict,
|
1340 |
+
)
|
1341 |
+
hidden_states = transformer_outputs[0]
|
1342 |
+
logits = self.score(hidden_states)
|
1343 |
+
|
1344 |
+
if input_ids is not None:
|
1345 |
+
batch_size = input_ids.shape[0]
|
1346 |
+
else:
|
1347 |
+
batch_size = inputs_embeds.shape[0]
|
1348 |
+
|
1349 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1350 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1351 |
+
if self.config.pad_token_id is None:
|
1352 |
+
sequence_lengths = -1
|
1353 |
+
else:
|
1354 |
+
if input_ids is not None:
|
1355 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1356 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1357 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1358 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1359 |
+
else:
|
1360 |
+
sequence_lengths = -1
|
1361 |
+
|
1362 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1363 |
+
|
1364 |
+
loss = None
|
1365 |
+
if labels is not None:
|
1366 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
1367 |
+
|
1368 |
+
if not return_dict:
|
1369 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1370 |
+
return ((loss,) + output) if loss is not None else output
|
1371 |
+
|
1372 |
+
return SequenceClassifierOutputWithPast(
|
1373 |
+
loss=loss,
|
1374 |
+
logits=pooled_logits,
|
1375 |
+
past_key_values=transformer_outputs.past_key_values,
|
1376 |
+
hidden_states=transformer_outputs.hidden_states,
|
1377 |
+
attentions=transformer_outputs.attentions,
|
1378 |
+
)
|
1379 |
+
|
1380 |
+
|
1381 |
+
@add_start_docstrings(
|
1382 |
+
"""
|
1383 |
+
The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
|
1384 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1385 |
+
""",
|
1386 |
+
LLAMA_START_DOCSTRING,
|
1387 |
+
)
|
1388 |
+
class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
1389 |
+
base_model_prefix = "transformer"
|
1390 |
+
|
1391 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
|
1392 |
+
def __init__(self, config):
|
1393 |
+
super().__init__(config)
|
1394 |
+
self.transformer = LlamaModel(config)
|
1395 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1396 |
+
|
1397 |
+
# Initialize weights and apply final processing
|
1398 |
+
self.post_init()
|
1399 |
+
|
1400 |
+
def get_input_embeddings(self):
|
1401 |
+
return self.transformer.embed_tokens
|
1402 |
+
|
1403 |
+
def set_input_embeddings(self, value):
|
1404 |
+
self.transformer.embed_tokens = value
|
1405 |
+
|
1406 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1407 |
+
def forward(
|
1408 |
+
self,
|
1409 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1410 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1411 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1412 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1413 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1414 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1415 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1416 |
+
output_attentions: Optional[bool] = None,
|
1417 |
+
output_hidden_states: Optional[bool] = None,
|
1418 |
+
return_dict: Optional[bool] = None,
|
1419 |
+
**kwargs,
|
1420 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1421 |
+
r"""
|
1422 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1423 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1424 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1425 |
+
are not taken into account for computing the loss.
|
1426 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1427 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1428 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1429 |
+
are not taken into account for computing the loss.
|
1430 |
+
"""
|
1431 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1432 |
+
|
1433 |
+
outputs = self.transformer(
|
1434 |
+
input_ids,
|
1435 |
+
attention_mask=attention_mask,
|
1436 |
+
position_ids=position_ids,
|
1437 |
+
past_key_values=past_key_values,
|
1438 |
+
inputs_embeds=inputs_embeds,
|
1439 |
+
output_attentions=output_attentions,
|
1440 |
+
output_hidden_states=output_hidden_states,
|
1441 |
+
return_dict=return_dict,
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
sequence_output = outputs[0]
|
1445 |
+
|
1446 |
+
logits = self.qa_outputs(sequence_output)
|
1447 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1448 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1449 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1450 |
+
|
1451 |
+
loss = None
|
1452 |
+
if start_positions is not None and end_positions is not None:
|
1453 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
1454 |
+
|
1455 |
+
if not return_dict:
|
1456 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1457 |
+
return ((loss,) + output) if loss is not None else output
|
1458 |
+
|
1459 |
+
return QuestionAnsweringModelOutput(
|
1460 |
+
loss=loss,
|
1461 |
+
start_logits=start_logits,
|
1462 |
+
end_logits=end_logits,
|
1463 |
+
hidden_states=outputs.hidden_states,
|
1464 |
+
attentions=outputs.attentions,
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
|
1468 |
+
@add_start_docstrings(
|
1469 |
+
"""
|
1470 |
+
The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1471 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1472 |
+
""",
|
1473 |
+
LLAMA_START_DOCSTRING,
|
1474 |
+
)
|
1475 |
+
class LlamaForTokenClassification(LlamaPreTrainedModel):
|
1476 |
+
def __init__(self, config):
|
1477 |
+
super().__init__(config)
|
1478 |
+
self.num_labels = config.num_labels
|
1479 |
+
self.model = LlamaModel(config)
|
1480 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1481 |
+
classifier_dropout = config.classifier_dropout
|
1482 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1483 |
+
classifier_dropout = config.hidden_dropout
|
1484 |
+
else:
|
1485 |
+
classifier_dropout = 0.1
|
1486 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1487 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1488 |
+
|
1489 |
+
# Initialize weights and apply final processing
|
1490 |
+
self.post_init()
|
1491 |
+
|
1492 |
+
def get_input_embeddings(self):
|
1493 |
+
return self.model.embed_tokens
|
1494 |
+
|
1495 |
+
def set_input_embeddings(self, value):
|
1496 |
+
self.model.embed_tokens = value
|
1497 |
+
|
1498 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1499 |
+
@add_code_sample_docstrings(
|
1500 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1501 |
+
output_type=TokenClassifierOutput,
|
1502 |
+
config_class=_CONFIG_FOR_DOC,
|
1503 |
+
)
|
1504 |
+
def forward(
|
1505 |
+
self,
|
1506 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1507 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1508 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1509 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1510 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1511 |
+
labels: Optional[torch.LongTensor] = None,
|
1512 |
+
use_cache: Optional[bool] = None,
|
1513 |
+
output_attentions: Optional[bool] = None,
|
1514 |
+
output_hidden_states: Optional[bool] = None,
|
1515 |
+
return_dict: Optional[bool] = None,
|
1516 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1517 |
+
r"""
|
1518 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1519 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1520 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1521 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1522 |
+
"""
|
1523 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1524 |
+
|
1525 |
+
outputs = self.model(
|
1526 |
+
input_ids,
|
1527 |
+
attention_mask=attention_mask,
|
1528 |
+
position_ids=position_ids,
|
1529 |
+
past_key_values=past_key_values,
|
1530 |
+
inputs_embeds=inputs_embeds,
|
1531 |
+
use_cache=use_cache,
|
1532 |
+
output_attentions=output_attentions,
|
1533 |
+
output_hidden_states=output_hidden_states,
|
1534 |
+
return_dict=return_dict,
|
1535 |
+
)
|
1536 |
+
sequence_output = outputs[0]
|
1537 |
+
sequence_output = self.dropout(sequence_output)
|
1538 |
+
logits = self.score(sequence_output)
|
1539 |
+
|
1540 |
+
loss = None
|
1541 |
+
if labels is not None:
|
1542 |
+
loss = self.loss_function(logits, labels, self.config)
|
1543 |
+
|
1544 |
+
if not return_dict:
|
1545 |
+
output = (logits,) + outputs[2:]
|
1546 |
+
return ((loss,) + output) if loss is not None else output
|
1547 |
+
|
1548 |
+
return TokenClassifierOutput(
|
1549 |
+
loss=loss,
|
1550 |
+
logits=logits,
|
1551 |
+
hidden_states=outputs.hidden_states,
|
1552 |
+
attentions=outputs.attentions,
|
1553 |
+
)
|