AlekseyCalvin commited on
Commit
4f6e286
·
verified ·
1 Parent(s): 17e91e0

Upload text_encoder/README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. text_encoder/README.md +120 -0
text_encoder/README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ - th
7
+ base_model:
8
+ - Qwen/Qwen2.5-VL-7B-Instruct
9
+ tags:
10
+ - text-generation-inference
11
+ - uncensored
12
+ - image-captioning
13
+ - vlm
14
+ - visual-understanding
15
+ - caption
16
+ - image-to-text
17
+ pipeline_tag: image-text-to-text
18
+ library_name: transformers
19
+ datasets:
20
+ - prithivMLmods/blip3o-caption-mini-arrow
21
+ - prithivMLmods/Caption3o-Opt-v2
22
+ ---
23
+
24
+ ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BZUG9GehjjprWyoQHTLxk.png)
25
+
26
+ # **Qwen2.5-VL-7B-Abliterated-Caption-it**
27
+
28
+ > The **Qwen2.5-VL-7B-Abliterated-Caption-it** model is a fine-tuned version of **Qwen2.5-VL-7B-Instruct**, tailored for **Abliterated Captioning** / **Uncensored Image Captioning**. This variant is designed to generate highly detailed and descriptive captions across a broad range of visual categories, including images with complex, sensitive, or nuanced content—across varying aspect ratios and resolutions.
29
+
30
+ # Key Highlights
31
+
32
+ * **Abliterated / Uncensored Captioning**: Fine-tuned to bypass common content filters while preserving factual and descriptive richness across diverse visual categories.
33
+
34
+ * **High-Fidelity Descriptions**: Generates comprehensive captions for general, artistic, technical, abstract, and low-context images.
35
+
36
+ * **Robust Across Aspect Ratios**: Capable of accurately captioning images with wide, tall, square, and irregular dimensions.
37
+
38
+ * **Variational Detail Control**: Produces outputs with both high-level summaries and fine-grained descriptions as needed.
39
+
40
+ * **Foundation on Qwen2.5-VL Architecture**: Leverages the strengths of the Qwen2.5-VL-7B multimodal model for visual reasoning, comprehension, and instruction-following.
41
+
42
+ * **Multilingual Output Capability**: Can support multilingual descriptions (English as default), adaptable via prompt engineering.
43
+
44
+ # Training Details
45
+
46
+ This model was fine-tuned using the following datasets:
47
+
48
+ * **[prithivMLmods/blip3o-caption-mini-arrow](https://huggingface.co/datasets/prithivMLmods/blip3o-caption-mini-arrow)**
49
+ * **[prithivMLmods/Caption3o-Opt-v2](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v2)**
50
+ * **Private/unlisted datasets** curated for uncensored and domain-specific image captioning tasks.
51
+
52
+ The training objective focused on enhancing performance in unconstrained, descriptive image captioning—especially for edge cases commonly filtered out in standard captioning benchmarks.
53
+
54
+ # Quick Start with Transformers
55
+
56
+ > [!note]
57
+ Instruction Query: Provide a detailed caption for the image
58
+
59
+ ```python
60
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
61
+ from qwen_vl_utils import process_vision_info
62
+
63
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
64
+ "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", torch_dtype="auto", device_map="auto"
65
+ )
66
+
67
+ processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it")
68
+
69
+ messages = [
70
+ {
71
+ "role": "user",
72
+ "content": [
73
+ {
74
+ "type": "image",
75
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
76
+ },
77
+ {"type": "text", "text": "Describe this image in detail."},
78
+ ],
79
+ }
80
+ ]
81
+
82
+ text = processor.apply_chat_template(
83
+ messages, tokenize=False, add_generation_prompt=True
84
+ )
85
+ image_inputs, video_inputs = process_vision_info(messages)
86
+ inputs = processor(
87
+ text=[text],
88
+ images=image_inputs,
89
+ videos=video_inputs,
90
+ padding=True,
91
+ return_tensors="pt",
92
+ )
93
+ inputs = inputs.to("cuda")
94
+
95
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
96
+ generated_ids_trimmed = [
97
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
98
+ ]
99
+ output_text = processor.batch_decode(
100
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
101
+ )
102
+ print(output_text)
103
+ ```
104
+
105
+ # Intended Use
106
+
107
+ This model is suited for:
108
+
109
+ * Generating detailed and unfiltered image captions for general-purpose or artistic datasets.
110
+ * Content moderation research, red-teaming, and generative safety evaluations.
111
+ * Enabling descriptive captioning for visual datasets typically excluded from mainstream models.
112
+ * Use in creative applications (e.g., storytelling, art generation) that benefit from rich descriptive captions.
113
+ * Captioning for non-standard aspect ratios and stylized visual content.
114
+
115
+ # Limitations
116
+
117
+ * May produce explicit, sensitive, or offensive descriptions depending on image content and prompts.
118
+ * Not suitable for deployment in production systems requiring content filtering or moderation.
119
+ * Can exhibit variability in caption tone or style depending on input prompt phrasing.
120
+ * Accuracy for unfamiliar or synthetic visual styles may vary.