--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-of-Realms-7b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 base_model_config: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true hub_model_id: Mistral-of-Realms-7b load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Akila/ForgottenRealmsWikiDataset data_files: - specific_formats/FRW-J-axolotl-completion.jsonl type: completion dataset_prepared_path: val_set_size: 0.02 output_dir: ./qlora-out #using lora for lower cost adapter: lora lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj sequence_len: 512 sample_packing: false pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: #only 2 epochs because of small dataset gradient_accumulation_steps: 3 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: #default deepspeed, can use more aggresive if needed like zero2, zero3 deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# Mistral-of-Realms-7b This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [Akila/ForgottenRealmsWikiDataset](https://huggingface.co/datasets/Akila/ForgottenRealmsWikiDataset) dataset. It achieves the following results on the evaluation set: - Loss: 2.1762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.4401 | 0.0 | 1 | 2.5991 | | 2.3719 | 0.25 | 2224 | 2.2777 | | 2.1262 | 0.5 | 4448 | 2.2483 | | 2.3942 | 0.75 | 6672 | 2.2234 | | 2.3839 | 1.0 | 8896 | 2.2065 | | 2.5641 | 1.25 | 11120 | 2.1937 | | 2.1295 | 1.5 | 13344 | 2.1821 | | 1.7813 | 1.75 | 15568 | 2.1773 | | 1.9467 | 2.0 | 17792 | 2.1762 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0