--- license: apache-2.0 library_name: transformers language: - en - pt pipeline_tag: translation --- # Transformer En-PT (Teeny-Tiny Castle) This model is part of a tutorial tied to the [Teeny-Tiny Castle](https://github.com/Nkluge-correa/TeenyTinyCastle), an open-source repository containing educational tools for AI Ethics and Safety research. ## How to Use ```python import tensorflow as tf import numpy as np import string import keras import re strip_chars = string.punctuation strip_chars = strip_chars.replace("[", "") strip_chars = strip_chars.replace("]", "") def custom_standardization(input_string): lowercase = tf.strings.lower(input_string) return tf.strings.regex_replace(lowercase, f"[{re.escape(strip_chars)}]", "") portuguese_vocabulary_path = hf_hub_download( repo_id="AiresPucrs/transformer-eng-por", filename="keras_transformer_blocks.py", repo_type='model', local_dir="./") from keras_transformer_blocks import TransformerEncoder, PositionalEmbedding, TransformerDecoder transformer = keras.models.load_model("./transformer-eng-por/transformer-eng-por.h5", custom_objects={"TransformerEncoder": TransformerEncoder, "PositionalEmbedding": PositionalEmbedding, "TransformerDecoder": TransformerDecoder}) with open('portuguese_vocabulary.txt', encoding='utf-8', errors='backslashreplace') as fp: portuguese_vocab = [line.strip() for line in fp] fp.close() with open('english_vocabulary.txt', encoding='utf-8', errors='backslashreplace') as fp: english_vocab = [line.strip() for line in fp] fp.close() target_vectorization = tf.keras.layers.TextVectorization(max_tokens=20000, output_mode="int", output_sequence_length=21, standardize=custom_standardization, vocabulary=portuguese_vocab) source_vectorization = tf.keras.layers.TextVectorization(max_tokens=20000, output_mode="int", output_sequence_length=20, vocabulary=english_vocab) portuguese_index_lookup = dict(zip(range(len(portuguese_vocab)), portuguese_vocab)) max_decoded_sentence_length = 20 def decode_sequence(input_sentence): tokenized_input_sentence = source_vectorization([input_sentence]) decoded_sentence = "[start]" for i in range(max_decoded_sentence_length): tokenized_target_sentence = target_vectorization([decoded_sentence])[:, :-1] predictions = transformer([tokenized_input_sentence, tokenized_target_sentence]) sampled_token_index = np.argmax(predictions[0, i, :]) sampled_token = portuguese_index_lookup[sampled_token_index] decoded_sentence += " " + sampled_token if sampled_token == "[end]": break return decoded_sentence eng_sentences =["What is its name?", "How old are you?", "I know you know where Mary is.", "We will show Tom.", "What do you all do?", "Don't do it!"] for sentence in eng_sentences: print(f"English sentence:\n{sentence}") print(f'Portuguese translation:\n{decode_sequence(sentence)}') print('-' * 50) ```