--- license: apache-2.0 language: - en base_model: - google/siglip-so400m-patch14-384 pipeline_tag: image-classification library_name: transformers tags: - deepfakedetection - image-authenticity - image-classification --- ![bXfKBT3LQkbeLzPCBHTGT.png](https://cas-bridge.xethub.hf.co/xet-bridge-us/68206a8f14f1230be619fde3/27a2411a7aabcf28ea23c565d031a53b7e5e2fca4c0dfc17cbc0ed3fb32ec2fa?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250511T104120Z&X-Amz-Expires=3600&X-Amz-Signature=fb917f3ab607b8042bdf3c6a95fec4315d23d907d1705aef14cfdda11532dab7&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=675d3ca88d0f15d76e49d5ea&response-content-disposition=inline%3B+filename*%3DUTF-8%27%27Gemini_Generated_Image_3sc2d03sc2d03sc2.jpeg%3B+filename%3D%22Gemini_Generated_Image_3sc2d03sc2d03sc2.jpeg%22%3B&response-content-type=image%2Fjpeg&x-id=GetObject&Expires=1746963680&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0Njk2MzY4MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODIwNmE4ZjE0ZjEyMzBiZTYxOWZkZTMvMjdhMjQxMWE3YWFiY2YyOGVhMjNjNTY1ZDAzMWE1M2I3ZTVlMmZjYTRjMGRmYzE3Y2JjMGVkM2ZiMzJlYzJmYSoifV19&Signature=TkLl8ndIUD3coiaY3Ujgj98hdF2K0DVRn4L2LH1SMCZ6NVSaoDsWkgv5jOlGkzp-8Gwv1240BeUkNqJ759UWZY6%7Egr4DJMxQVR15pW0OCTwbWlj6XzT2UgEtYyWwxMfN5yeirKdXAvbPVikaUjUEcqYOu7sshvu7fK7W4iTaap2FuRVt%7EhqPpjRBiGrPRMCrZmY1jpwNHzu34iUhbfg4uWngoXuobviWgBhfXzBG-0GvLf%7EOFwNsYOq3PHYtz9kDeKiNLCaMx0unxke8FHSjzquQ6bnD0uNltmnN-aXZjSiNC-qW4U-%7EQeocdZybMglZiKq1%7E%7Eb5LDnOsG2cafNWSA__&Key-Pair-Id=K2L8F4GPSG1IFC) ### Satyadrishti-V1 Large ## πŸ”­ Model Overview **Satyadrishti-V1** is an open-source image classification model by [AIRAS INC](https://www.airas.ai), fine-tuned for deepfake detection. It is designed to classify images, determining if they are "Real" or "Fake". This model is part of the Satyadrishti series and leverages Google's `google/siglip-so400m-patch14-384` image classification architecture. This specific variant, **Satyadrishti-V1 Large**, has been fine-tuned for robust performance with its 840 million parameters. --- ## πŸ“¦ General Information | Metadata | Value | |---------|-------| | **Model Name** | Satyadrishti-V1 Large | | **Model ID** | AirasInnovations/Satyadrishti-V1-LARGE | | **License** | Apache-2.0 | | **Language** | English | | **Library** | Transformers | | **Base Model** | google/siglip-so400m-patch14-384 | | **Pipeline Tag** | image-classification | | **Tags** | image-classification, deepfakedetection, image-authenticity | --- ## 🧠 Model Architecture - **Architecture**: Fine-tuned SigLIP Vision Transformer - **Task**: Binary Image Classification (Real vs Fake) - **Classes**: - `Class 0`: Fake (Deepfake / AI-generated / Manipulated) - `Class 1`: Real (Authentic) --- ## πŸ“ˆ Training Details ### Dataset - **Datasets**: Utilizes over 50 diverse datasets, including selections from prithivMLmods, Kaggle, and other sources. - **Content**: Includes a wide variety of real photos and synthetic images, covering outputs from models like DALL-E 3, Imagen, and others. - **Data Augmentation**: Horizontal flips, rotations, color jittering ### Hyperparameters | Parameter | Value | |---------|-------| | **Base Model** | google/siglip-so400m-patch14-384 (~400M params) | | **Fine-Tuned Model Size** | ~840 million parameters | | **Optimizer** | AdamW | | **Learning Rate** | 5e-5 | | **Loss Function** | Cross-Entropy Loss | | **Epochs** | 10 | | **Hardware** | 2x NVIDIA T4 GPUs | | **Training Time** | ~36 hours | --- ## βœ… Evaluation Metrics | Metric | Score | |--------|-------| | **Accuracy** | 96% | | **Precision** | 98% | | **Recall** | 98% | | **F1-Score** | 97% | > ⚠️ Note: These metrics were computed on a dedicated validation set. Performance may vary depending on real-world input distribution and image quality. --- ## πŸ“Œ Intended Use The model is intended for detecting whether an image is **real (authentic)** or **fake (manipulated or AI-generated)**. It can be applied in various domains: - **Social Media Moderation** - **Digital Forensics** - **Journalism & Fact-Checking** - **Authentication Systems** - **Research & Development** --- ## πŸ› οΈ How to Use ### Requirements ```bash pip install transformers torch pillow gradio ``` ### Code Example ```python from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch model_name = "AirasInnovations/Satyadrishti-V1-LARGE" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def detect_authenticity(image): image = image.convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = model.config.id2label return {labels[i]: round(probs[i], 3) for i in range(len(probs))} ``` You can also use it directly via Gradio interface as shown in the example script. --- ## πŸ†š Comparison with Vatsav Deepfake Detection | Feature | Vatsav Deepfake Detection | Satyadrishti-V1 Large | |--------|----------------------------|------------------------| | **Training Data Age** | 3 years old | Jan–April 2025 | | **Evaluation Data** | Kaggle dataset | Multiple datasets including prithivMLmods Deepfake-vs-Real-v2 | | **Open Source?** | ❌ No | βœ… Yes | | **Accuracy** | 75% | 96% | | **Precision** | 75% | 98% | | **Recall** | 100% | 98% | | **F1-Score** | ~86% | 97% | --- ## πŸ“š Citation & Acknowledgments We thank [Google Research](https://ai.googleblog.com/) for open-sourcing the SigLIP architecture and [Prithiv MLMods](https://huggingface.co/prithivMLmods) for providing updated datasets for training. If you use this model in your work, please cite: ``` @misc{airas-satyadrishti-large, author = {AIRAS INC}, title = {Satyadrishti-V1 Large: An Open-Source Image Classification Model for Deepfake Detection}, year = {2025}, publisher = {Hugging Face}, journal = {Model Card}, howpublished = {\url{https://huggingface.co/AirasInnovations/Satyadrishti-V1-LARGE}} } ``` --- ## πŸ“¬ Contact For support, feedback, or collaboration opportunities, please visit [AIRAS INC Website](https://www.airas.ai) or reach out to us at contact@airas.ai.