Upload folder using huggingface_hub
Browse files- README.md +163 -3
- config.json +25 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +33 -0
README.md
CHANGED
@@ -1,3 +1,163 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- google/siglip-so400m-patch14-384
|
7 |
+
pipeline_tag: image-classification
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- deepfakedetection
|
11 |
+
- image-authenticity
|
12 |
+
- image-classification
|
13 |
+
---
|
14 |
+

|
15 |
+
### Satyadrishti-V1 Large
|
16 |
+
## 🔭 Model Overview
|
17 |
+
|
18 |
+
**Satyadrishti-V1** is an open-source image classification model by [AIRAS INC](https://www.airas.ai), fine-tuned for deepfake detection. It is designed to classify images, determining if they are "Real" or "Fake". This model is part of the Satyadrishti series and leverages Google's `google/siglip-so400m-patch14-384` image classification architecture.
|
19 |
+
|
20 |
+
This specific variant, **Satyadrishti-V1 Large**, has been fine-tuned for robust performance with its 840 million parameters.
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## 📦 General Information
|
25 |
+
|
26 |
+
| Metadata | Value |
|
27 |
+
|---------|-------|
|
28 |
+
| **Model Name** | Satyadrishti-V1 Large |
|
29 |
+
| **Model ID** | AirasInnovations/Satyadrishti-V1-LARGE |
|
30 |
+
| **License** | Apache-2.0 |
|
31 |
+
| **Language** | English |
|
32 |
+
| **Library** | Transformers |
|
33 |
+
| **Base Model** | google/siglip-so400m-patch14-384 |
|
34 |
+
| **Pipeline Tag** | image-classification |
|
35 |
+
| **Tags** | image-classification, deepfakedetection, image-authenticity |
|
36 |
+
|
37 |
+
---
|
38 |
+
|
39 |
+
## 🧠 Model Architecture
|
40 |
+
|
41 |
+
- **Architecture**: Fine-tuned SigLIP Vision Transformer
|
42 |
+
- **Task**: Binary Image Classification (Real vs Fake)
|
43 |
+
- **Classes**:
|
44 |
+
- `Class 0`: Fake (Deepfake / AI-generated / Manipulated)
|
45 |
+
- `Class 1`: Real (Authentic)
|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
## 📈 Training Details
|
50 |
+
|
51 |
+
### Dataset
|
52 |
+
- **Datasets**: Utilizes over 50 diverse datasets, including selections from prithivMLmods, Kaggle, and other sources.
|
53 |
+
- **Content**: Includes a wide variety of real photos and synthetic images, covering outputs from models like DALL-E 3, Imagen, and others.
|
54 |
+
- **Data Augmentation**: Horizontal flips, rotations, color jittering
|
55 |
+
|
56 |
+
### Hyperparameters
|
57 |
+
| Parameter | Value |
|
58 |
+
|---------|-------|
|
59 |
+
| **Base Model** | google/siglip-so400m-patch14-384 (~400M params) |
|
60 |
+
| **Fine-Tuned Model Size** | ~840 million parameters |
|
61 |
+
| **Optimizer** | AdamW |
|
62 |
+
| **Learning Rate** | 5e-5 |
|
63 |
+
| **Loss Function** | Cross-Entropy Loss |
|
64 |
+
| **Epochs** | 10 |
|
65 |
+
| **Hardware** | 2x NVIDIA T4 GPUs |
|
66 |
+
| **Training Time** | ~36 hours |
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
## ✅ Evaluation Metrics
|
71 |
+
|
72 |
+
| Metric | Score |
|
73 |
+
|--------|-------|
|
74 |
+
| **Accuracy** | 96% |
|
75 |
+
| **Precision** | 98% |
|
76 |
+
| **Recall** | 98% |
|
77 |
+
| **F1-Score** | 97% |
|
78 |
+
|
79 |
+
> ⚠️ Note: These metrics were computed on a dedicated validation set. Performance may vary depending on real-world input distribution and image quality.
|
80 |
+
|
81 |
+
---
|
82 |
+
|
83 |
+
## 📌 Intended Use
|
84 |
+
|
85 |
+
The model is intended for detecting whether an image is **real (authentic)** or **fake (manipulated or AI-generated)**. It can be applied in various domains:
|
86 |
+
|
87 |
+
- **Social Media Moderation**
|
88 |
+
- **Digital Forensics**
|
89 |
+
- **Journalism & Fact-Checking**
|
90 |
+
- **Authentication Systems**
|
91 |
+
- **Research & Development**
|
92 |
+
|
93 |
+
---
|
94 |
+
|
95 |
+
## 🛠️ How to Use
|
96 |
+
|
97 |
+
### Requirements
|
98 |
+
|
99 |
+
```bash
|
100 |
+
pip install transformers torch pillow gradio
|
101 |
+
```
|
102 |
+
|
103 |
+
### Code Example
|
104 |
+
|
105 |
+
```python
|
106 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
107 |
+
from PIL import Image
|
108 |
+
import torch
|
109 |
+
|
110 |
+
model_name = "AirasInnovations/Satyadrishti-V1-LARGE"
|
111 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
112 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
113 |
+
|
114 |
+
def detect_authenticity(image):
|
115 |
+
image = image.convert("RGB")
|
116 |
+
inputs = processor(images=image, return_tensors="pt")
|
117 |
+
with torch.no_grad():
|
118 |
+
logits = model(**inputs).logits
|
119 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
120 |
+
labels = model.config.id2label
|
121 |
+
return {labels[i]: round(probs[i], 3) for i in range(len(probs))}
|
122 |
+
```
|
123 |
+
|
124 |
+
You can also use it directly via Gradio interface as shown in the example script.
|
125 |
+
|
126 |
+
---
|
127 |
+
|
128 |
+
## 🆚 Comparison with Vatsav Deepfake Detection
|
129 |
+
|
130 |
+
| Feature | Vatsav Deepfake Detection | Satyadrishti-V1 Large |
|
131 |
+
|--------|----------------------------|------------------------|
|
132 |
+
| **Training Data Age** | 3 years old | Jan–April 2025 |
|
133 |
+
| **Evaluation Data** | Kaggle dataset | Multiple datasets including prithivMLmods Deepfake-vs-Real-v2 |
|
134 |
+
| **Open Source?** | ❌ No | ✅ Yes |
|
135 |
+
| **Accuracy** | 75% | 96% |
|
136 |
+
| **Precision** | 75% | 98% |
|
137 |
+
| **Recall** | 100% | 98% |
|
138 |
+
| **F1-Score** | ~86% | 97% |
|
139 |
+
|
140 |
+
---
|
141 |
+
|
142 |
+
## 📚 Citation & Acknowledgments
|
143 |
+
|
144 |
+
We thank [Google Research](https://ai.googleblog.com/) for open-sourcing the SigLIP architecture and [Prithiv MLMods](https://huggingface.co/prithivMLmods) for providing updated datasets for training.
|
145 |
+
|
146 |
+
If you use this model in your work, please cite:
|
147 |
+
|
148 |
+
```
|
149 |
+
@misc{airas-satyadrishti-large,
|
150 |
+
author = {AIRAS INC},
|
151 |
+
title = {Satyadrishti-V1 Large: An Open-Source Image Classification Model for Deepfake Detection},
|
152 |
+
year = {2025},
|
153 |
+
publisher = {Hugging Face},
|
154 |
+
journal = {Model Card},
|
155 |
+
howpublished = {\url{https://huggingface.co/AirasInnovations/Satyadrishti-V1-LARGE}}
|
156 |
+
}
|
157 |
+
```
|
158 |
+
|
159 |
+
---
|
160 |
+
|
161 |
+
## 📬 Contact
|
162 |
+
|
163 |
+
For support, feedback, or collaboration opportunities, please visit [AIRAS INC Website](https://www.airas.ai) or reach out to us at [email protected].
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SiglipModel"
|
4 |
+
],
|
5 |
+
"initializer_factor": 1.0,
|
6 |
+
"model_type": "siglip",
|
7 |
+
"text_config": {
|
8 |
+
"hidden_size": 1152,
|
9 |
+
"intermediate_size": 4304,
|
10 |
+
"model_type": "siglip_text_model",
|
11 |
+
"num_attention_heads": 16,
|
12 |
+
"num_hidden_layers": 27
|
13 |
+
},
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.37.0.dev0",
|
16 |
+
"vision_config": {
|
17 |
+
"hidden_size": 1152,
|
18 |
+
"image_size": 384,
|
19 |
+
"intermediate_size": 4304,
|
20 |
+
"model_type": "siglip_vision_model",
|
21 |
+
"num_attention_heads": 16,
|
22 |
+
"num_hidden_layers": 27,
|
23 |
+
"patch_size": 14
|
24 |
+
}
|
25 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea2abad2b7f8a9c1aa5e49a244d5d57ffa71c56f720c94bc5d240ef4d6e1d94a
|
3 |
+
size 3511950624
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.5,
|
7 |
+
0.5,
|
8 |
+
0.5
|
9 |
+
],
|
10 |
+
"image_processor_type": "SiglipImageProcessor",
|
11 |
+
"image_std": [
|
12 |
+
0.5,
|
13 |
+
0.5,
|
14 |
+
0.5
|
15 |
+
],
|
16 |
+
"processor_class": "SiglipProcessor",
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 384,
|
21 |
+
"width": 384
|
22 |
+
}
|
23 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "</s>",
|
4 |
+
"lstrip": true,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": true,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": true,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": true,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": true,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"1": {
|
4 |
+
"content": "</s>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"2": {
|
12 |
+
"content": "<unk>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
}
|
19 |
+
},
|
20 |
+
"additional_special_tokens": [],
|
21 |
+
"clean_up_tokenization_spaces": true,
|
22 |
+
"do_lower_case": true,
|
23 |
+
"eos_token": "</s>",
|
24 |
+
"model_input_names": [
|
25 |
+
"input_ids"
|
26 |
+
],
|
27 |
+
"model_max_length": 64,
|
28 |
+
"pad_token": "</s>",
|
29 |
+
"processor_class": "SiglipProcessor",
|
30 |
+
"sp_model_kwargs": {},
|
31 |
+
"tokenizer_class": "SiglipTokenizer",
|
32 |
+
"unk_token": "<unk>"
|
33 |
+
}
|