import os import math import torch import numpy as np import matplotlib.pyplot as plt from torch.utils.data import DataLoader, Sampler from collections import defaultdict from torch.optim.lr_scheduler import LambdaLR from diffusers import UNet2DConditionModel, AutoencoderKL, DDPMScheduler from accelerate import Accelerator from datasets import load_from_disk from tqdm import tqdm from PIL import Image,ImageOps import wandb import random import gc from accelerate.state import DistributedType from torch.distributed import broadcast_object_list from torch.utils.checkpoint import checkpoint from diffusers.models.attention_processor import AttnProcessor2_0 from datetime import datetime import bitsandbytes as bnb # region scheduler start #@title scheduler # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/leffff/euler-scheduler from dataclasses import dataclass from typing import Tuple, Any, Optional, Union import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import BaseOutput from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin @dataclass class FlowMatchingEulerSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep (which in flow-matching notation should be noted as `(x_{t+h})`). `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` (which in flow-matching notation should be noted as `(x_{1})`) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None def get_time_coefficients(timestep: torch.Tensor, ndim: int) -> torch.Tensor: """ Convert timestep to time coefficients. Args: timestep (`torch.Tensor`): Timestep tensor. ndim (`int`): Number of dimensions. Returns: `torch.Tensor`: Time coefficients. """ return timestep.reshape((timestep.shape[0], *([1] * (ndim - 1) ))) class FlowMatchingEulerScheduler(SchedulerMixin, ConfigMixin): """ `FlowMatchingEulerScheduler` is a scheduler for training and inferencing Conditional Flow Matching models (CFMs). Flow Matching (FM) is a novel, simulation-free methodology for training Continuous Normalizing Flows (CNFs) by regressing vector fields of predetermined conditional probability paths, facilitating scalable training and efficient sample generation through the utilization of various probability paths, including Gaussian and Optimal Transport (OT) paths, thereby enhancing model performance and generalization capabilities Args: num_inference_steps (`int`, defaults to 100): The number of steps on inference. """ @register_to_config def __init__(self, num_inference_steps: int = 100): self.timesteps = None self.num_inference_steps = None self.h = None if num_inference_steps is not None: self.set_timesteps(num_inference_steps) @staticmethod def add_noise(original_samples: torch.Tensor, noise: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor: """ Add noise to the given sample Args: original_samples (`torch.Tensor`): The original sample that is to be noised noise (`torch.Tensor`): The noise that is used to noise the image timestep (`torch.Tensor`): Timestep used to create linear interpolation `x_t = t * x_1 + (1 - t) * x_0`. Where x_1 is a target distribution, x_0 is a source distribution and t (timestep) ∈ [0, 1] """ t = get_time_coefficients(timestep, original_samples.ndim) noised_sample = t * original_samples + (1 - t) * noise return noised_sample def set_timesteps(self, num_inference_steps: int = 100) -> None: """ Set number of inference steps (Euler intagration steps) Args: num_inference_steps (`int`, defaults to 100): The number of steps on inference. """ self.num_inference_steps = num_inference_steps self.h = 1 / num_inference_steps self.timesteps = torch.arange(0, 1, self.h) def step(self, model_output: torch.Tensor, timestep: torch.Tensor, sample: torch.Tensor, return_dict: bool = True) -> Union[FlowMatchingEulerSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): Timestep used to perform Euler Method `x_t = h * f(x_t, t) + x_{t-1}`. Where x_1 is a target distribution, x_0 is a source distribution and t (timestep) ∈ [0, 1] sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ step = FlowMatchingEulerSchedulerOutput( prev_sample=sample + self.h * model_output, pred_original_sample=sample + (1 - get_time_coefficients(timestep, model_output.ndim)) * model_output ) if return_dict: return step return step.prev_sample, @staticmethod def get_velocity(original_samples: torch.Tensor, noise: torch.Tensor) -> torch.Tensor: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: original_samples (`torch.Tensor`): The original sample that is to be noised noise (`torch.Tensor`): The noise that is used to noise the image Returns: `torch.Tensor` """ return original_samples - noise @staticmethod def scale_model_input(sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample # region scheduler end # --------------------------- Параметры --------------------------- save_path = "datasets/768" # "datasets/576" #"datasets/576p2" #"datasets/1152p2" #"datasets/576p2" #"datasets/dataset384_temp" #"datasets/dataset384" #"datasets/imagenet-1kk" #"datasets/siski576" #"datasets/siski384" #"datasets/siski64" #"datasets/mnist" batch_size = 30 #26 #45 #11 #45 #555 #35 #7 base_learning_rate = 4e-6 #9.5e-7 #9e-7 #2e-6 #1e-6 #9e-7 #1e-6 #2e-6 #1e-6 #2e-6 #6e-6 #2e-6 #8e-7 #6e-6 #2e-5 #4e-5 #3e-5 #5e-5 #8e-5 min_learning_rate = 2.5e-5 #2e-5 num_epochs = 1 #2 #36 #18 project = "sdxs" <<<<<<< HEAD use_wandb = True save_model = True ======= use_wandb = False save_model = False >>>>>>> d0c94e4 (sdxxxs) limit = 0 #200000 #0 checkpoints_folder = "" # Параметры для диффузии n_diffusion_steps = 40 samples_to_generate = 12 guidance_scale = 5 sample_interval_share = 25 # samples/save per epoch # Папки для сохранения результатов generated_folder = "samples" os.makedirs(generated_folder, exist_ok=True) # Настройка seed для воспроизводимости current_date = datetime.now() seed = int(current_date.strftime("%Y%m%d")) fixed_seed = True if fixed_seed: torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # --------------------------- Параметры LoRA --------------------------- # pip install peft lora_name = "" #"nusha" # Имя для сохранения/загрузки LoRA адаптеров lora_rank = 32 # Ранг LoRA (чем меньше, тем компактнее модель) lora_alpha = 64 # Альфа параметр LoRA, определяющий масштаб print("init") # Включение Flash Attention 2/SDPA torch.backends.cuda.enable_flash_sdp(True) # --------------------------- Инициализация Accelerator -------------------- dtype = torch.bfloat16 accelerator = Accelerator(mixed_precision="bf16") device = accelerator.device gen = torch.Generator(device=device) gen.manual_seed(seed) # --------------------------- Инициализация WandB --------------------------- if use_wandb and accelerator.is_main_process: wandb.init(project=project+lora_name, config={ "batch_size": batch_size, "base_learning_rate": base_learning_rate, "num_epochs": num_epochs, "n_diffusion_steps": n_diffusion_steps, "samples_to_generate": samples_to_generate, "dtype": str(dtype) }) # --------------------------- Загрузка датасета --------------------------- class ResolutionBatchSampler(Sampler): """Сэмплер, который группирует примеры по одинаковым размерам""" def __init__(self, dataset, batch_size, shuffle=True, drop_last=False): self.dataset = dataset self.batch_size = batch_size self.shuffle = shuffle self.drop_last = drop_last # Группируем примеры по размерам self.size_groups = defaultdict(list) try: widths = dataset["width"] heights = dataset["height"] except KeyError: widths = [0] * len(dataset) heights = [0] * len(dataset) for i, (w, h) in enumerate(zip(widths, heights)): size = (w, h) self.size_groups[size].append(i) # Печатаем статистику по размерам print(f"Найдено {len(self.size_groups)} уникальных размеров:") for size, indices in sorted(self.size_groups.items(), key=lambda x: len(x[1]), reverse=True): width, height = size print(f" {width}x{height}: {len(indices)} примеров") # Формируем батчи self.reset() def reset(self): """Сбрасывает и перемешивает индексы""" self.batches = [] for size, indices in self.size_groups.items(): if self.shuffle: indices_copy = indices.copy() random.shuffle(indices_copy) else: indices_copy = indices # Разбиваем на батчи for i in range(0, len(indices_copy), self.batch_size): batch_indices = indices_copy[i:i + self.batch_size] # Пропускаем неполные батчи если drop_last=True if self.drop_last and len(batch_indices) < self.batch_size: continue self.batches.append(batch_indices) # Перемешиваем батчи между собой if self.shuffle: random.shuffle(self.batches) def __iter__(self): self.reset() # Сбрасываем и перемешиваем в начале каждой эпохи return iter(self.batches) def __len__(self): return len(self.batches) # Функция для выборки фиксированных семплов по размерам def get_fixed_samples_by_resolution(dataset, samples_per_group=1): """Выбирает фиксированные семплы для каждого уникального разрешения""" # Группируем по размерам size_groups = defaultdict(list) try: widths = dataset["width"] heights = dataset["height"] except KeyError: widths = [0] * len(dataset) heights = [0] * len(dataset) for i, (w, h) in enumerate(zip(widths, heights)): size = (w, h) size_groups[size].append(i) # Выбираем фиксированные примеры из каждой группы fixed_samples = {} for size, indices in size_groups.items(): # Определяем сколько семплов брать из этой группы n_samples = min(samples_per_group, len(indices)) if len(size_groups)==1: n_samples = samples_to_generate if n_samples == 0: continue # Выбираем случайные индексы sample_indices = random.sample(indices, n_samples) samples_data = [dataset[idx] for idx in sample_indices] # Собираем данные latents = torch.tensor(np.array([item["vae"] for item in samples_data]), dtype=dtype).to(device) embeddings = torch.tensor(np.array([item["embeddings"] for item in samples_data]), dtype=dtype).to(device) texts = [item["text"] for item in samples_data] # Сохраняем для этого размера fixed_samples[size] = (latents, embeddings, texts) print(f"Создано {len(fixed_samples)} групп фиксированных семплов по разрешениям") return fixed_samples if limit > 0: dataset = load_from_disk(save_path).select(range(limit)) else: dataset = load_from_disk(save_path) def collate_fn(batch): # Преобразуем список в тензоры и перемещаем на девайс latents = torch.tensor(np.array([item["vae"] for item in batch]), dtype=dtype).to(device) embeddings = torch.tensor(np.array([item["embeddings"] for item in batch]), dtype=dtype).to(device) return latents, embeddings # Используем наш ResolutionBatchSampler batch_sampler = ResolutionBatchSampler(dataset, batch_size=batch_size, shuffle=True) dataloader = DataLoader(dataset, batch_sampler=batch_sampler)#, collate_fn=collate_fn) print("Total samples",len(dataloader)) dataloader = accelerator.prepare(dataloader) # --------------------------- Загрузка моделей --------------------------- # VAE загружается на CPU для экономии GPU-памяти vae = AutoencoderKL.from_pretrained("AuraDiffusion/16ch-vae").to("cpu", dtype=dtype) # DDPMScheduler с V_Prediction и Zero-SNR # scheduler = DDPMScheduler( # num_train_timesteps=1000, # Полный график шагов для обучения # prediction_type="v_prediction", # V-Prediction # rescale_betas_zero_snr=True, # Включение Zero-SNR # timestep_spacing="leading", # Добавляем улучшенное распределение шагов # steps_offset=1 # Избегаем проблем с нулевым timestep # ) # Flow Matching scheduler = FlowMatchingEulerScheduler( <<<<<<< HEAD num_train_timesteps=1000, ======= # num_train_timesteps=1000, >>>>>>> d0c94e4 (sdxxxs) ) # Инициализация переменных для возобновления обучения start_epoch = 0 global_step = 0 # Расчёт общего количества шагов total_training_steps = (len(dataloader) * num_epochs) # Get the world size world_size = accelerator.state.num_processes print(f"World Size: {world_size}") # Опция загрузки модели из последнего чекпоинта (если существует) latest_checkpoint = os.path.join(checkpoints_folder, project) if os.path.isdir(latest_checkpoint): print("Загружаем UNet из чекпоинта:", latest_checkpoint) unet = UNet2DConditionModel.from_pretrained(latest_checkpoint).to(device, dtype=dtype) unet.enable_gradient_checkpointing() unet.set_use_memory_efficient_attention_xformers(False) # отключаем xformers try: unet.set_attn_processor(AttnProcessor2_0()) # Используем стандартный AttnProcessor print("SDPA включен через set_attn_processor.") except Exception as e: print(f"Ошибка при включении SDPA: {e}") print("Попытка использовать enable_xformers_memory_efficient_attention.") unet.set_use_memory_efficient_attention_xformers(True) if lora_name: print(f"--- Настройка LoRA через PEFT (Rank={lora_rank}, Alpha={lora_alpha}) ---") from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from peft.tuners.lora import LoraModel import os # 1. Замораживаем все параметры UNet unet.requires_grad_(False) print("Параметры базового UNet заморожены.") # 2. Создаем конфигурацию LoRA lora_config = LoraConfig( r=lora_rank, lora_alpha=lora_alpha, target_modules=["to_q", "to_k", "to_v", "to_out.0"], ) unet.add_adapter(lora_config) # 3. Оборачиваем UNet в PEFT-модель from peft import get_peft_model peft_unet = get_peft_model(unet, lora_config) # 4. Получаем параметры для оптимизации params_to_optimize = list(p for p in peft_unet.parameters() if p.requires_grad) # 5. Выводим информацию о количестве параметров if accelerator.is_main_process: lora_params_count = sum(p.numel() for p in params_to_optimize) total_params_count = sum(p.numel() for p in unet.parameters()) print(f"Количество обучаемых параметров (LoRA): {lora_params_count:,}") print(f"Общее количество параметров UNet: {total_params_count:,}") # 6. Путь для сохранения lora_save_path = os.path.join("lora", lora_name) os.makedirs(lora_save_path, exist_ok=True) # 7. Функция для сохранения def save_lora_checkpoint(model): if accelerator.is_main_process: print(f"Сохраняем LoRA адаптеры в {lora_save_path}") from peft.utils.save_and_load import get_peft_model_state_dict # Получаем state_dict только LoRA lora_state_dict = get_peft_model_state_dict(model) # Сохраняем веса torch.save(lora_state_dict, os.path.join(lora_save_path, "adapter_model.bin")) # Сохраняем конфиг model.peft_config["default"].save_pretrained(lora_save_path) # SDXL must be compatible from diffusers import StableDiffusionXLPipeline StableDiffusionXLPipeline.save_lora_weights(lora_save_path, lora_state_dict) # --------------------------- Оптимизатор --------------------------- # Определяем параметры для оптимизации if lora_name: # Если используется LoRA, оптимизируем только параметры LoRA trainable_params = [p for p in unet.parameters() if p.requires_grad] else: # Иначе оптимизируем все параметры trainable_params = list(unet.parameters()) # [1] Создаем словарь оптимизаторов (fused backward) optimizer_dict = { p: bnb.optim.AdamW8bit( [p], # Каждый параметр получает свой оптимизатор lr=base_learning_rate, betas=(0.9, 0.999), weight_decay=1e-5, eps=1e-8 ) for p in trainable_params } # [2] Определяем hook для применения оптимизатора сразу после накопления градиента def optimizer_hook(param): optimizer_dict[param].step() optimizer_dict[param].zero_grad(set_to_none=True) # [3] Регистрируем hook для trainable параметров модели for param in trainable_params: param.register_post_accumulate_grad_hook(optimizer_hook) # Подготовка через Accelerator unet, optimizer = accelerator.prepare(unet, optimizer_dict) # --------------------------- Фиксированные семплы для генерации --------------------------- # Примеры фиксированных семплов по размерам fixed_samples = get_fixed_samples_by_resolution(dataset) @torch.no_grad() def generate_and_save_samples(fixed_samples,step): """ Генерирует семплы для каждого из разрешений и сохраняет их. Args: step: Текущий шаг обучения fixed_samples: Словарь, где ключи - размеры (width, height), а значения - кортежи (latents, embeddings) """ try: original_model = accelerator.unwrap_model(unet) # Перемещаем VAE на device для семплирования vae.to(accelerator.device, dtype=dtype) # Устанавливаем количество diffusion шагов scheduler.set_timesteps(n_diffusion_steps) all_generated_images = [] size_info = [] # Для хранения информации о размере для каждого изображения all_captions = [] # Проходим по всем группам размеров for size, (sample_latents, sample_text_embeddings, sample_text) in fixed_samples.items(): width, height = size size_info.append(f"{width}x{height}") #print(f"Генерация {sample_latents.shape[0]} изображений размером {width}x{height}") # Инициализируем латенты случайным шумом для этой группы noise = torch.randn( sample_latents.shape, generator=gen, device=sample_latents.device, dtype=sample_latents.dtype ) # Начинаем с шума current_latents = noise.clone() # Подготовка текстовых эмбеддингов для guidance if guidance_scale > 0: empty_embeddings = torch.zeros_like(sample_text_embeddings) text_embeddings = torch.cat([empty_embeddings, sample_text_embeddings], dim=0) else: text_embeddings = sample_text_embeddings # Генерация изображений for t in scheduler.timesteps: # Подготовка входных данных для UNet t = t.unsqueeze(dim=0).to(device) # Добавляем размерность для батча if guidance_scale > 0: latent_model_input = torch.cat([current_latents] * 2) latent_model_input = scheduler.scale_model_input(latent_model_input, t) else: latent_model_input = scheduler.scale_model_input(current_latents, t) # Предсказание шума noise_pred = original_model(latent_model_input, t, text_embeddings).sample # Применение guidance scale if guidance_scale > 0: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # Обновление латентов current_latents = scheduler.step(noise_pred, t, current_latents).prev_sample # Декодирование через VAE latent = (current_latents.detach() / vae.config.scaling_factor) + vae.config.shift_factor latent = latent.to(accelerator.device, dtype=dtype) decoded = vae.decode(latent).sample # Преобразуем тензоры в PIL-изображения и сохраняем for img_idx, img_tensor in enumerate(decoded): img = (img_tensor.to(torch.float32) / 2 + 0.5).clamp(0, 1).cpu().numpy().transpose(1, 2, 0) pil_img = Image.fromarray((img * 255).astype("uint8")) # Определяем максимальные ширину и высоту max_width = max(size[0] for size in fixed_samples.keys()) max_height = max(size[1] for size in fixed_samples.keys()) max_width = max(255,max_width) max_height = max(255,max_height) # Добавляем padding, чтобы изображение стало размером max_width x max_height padded_img = ImageOps.pad(pil_img, (max_width, max_height), color='white') all_generated_images.append(padded_img) caption_text = sample_text[img_idx][:200] if img_idx < len(sample_text) else "" all_captions.append(caption_text) # Сохраняем с информацией о размере в имени файла save_path = f"{generated_folder}/{project}_{width}x{height}_{img_idx}.jpg" pil_img.save(save_path, "JPEG", quality=96) # Отправляем изображения на WandB с информацией о размере if use_wandb and accelerator.is_main_process: wandb_images = [ wandb.Image(img, caption=f"{all_captions[i]}") for i, img in enumerate(all_generated_images) ] wandb.log({"generated_images": wandb_images, "global_step": step}) finally: # Гарантированное перемещение VAE обратно на CPU vae.to("cpu") if original_model is not None: del original_model # Очистка всех тензоров for var in list(locals().keys()): if isinstance(locals()[var], torch.Tensor): del locals()[var] torch.cuda.empty_cache() gc.collect() # --------------------------- Генерация сэмплов перед обучением --------------------------- if accelerator.is_main_process: if save_model: print("Генерация сэмплов до старта обучения...") generate_and_save_samples(fixed_samples,0) # Модифицируем функцию сохранения модели для поддержки LoRA def save_checkpoint(unet): if accelerator.is_main_process: if lora_name: # Сохраняем только LoRA адаптеры save_lora_checkpoint(unet) else: # Сохраняем полную модель accelerator.unwrap_model(unet).save_pretrained(os.path.join(checkpoints_folder, f"{project}")) # --------------------------- Тренировочный цикл --------------------------- # Для логирования среднего лосса каждые % эпохи if accelerator.is_main_process: print(f"Total steps per GPU: {total_training_steps}") print(f"[GPU {accelerator.process_index}] Total steps: {total_training_steps}") epoch_loss_points = [] progress_bar = tqdm(total=total_training_steps, disable=not accelerator.is_local_main_process, desc="Training", unit="step") # Определяем интервал для сэмплирования и логирования в пределах эпохи (10% эпохи) steps_per_epoch = len(dataloader) sample_interval = max(1, steps_per_epoch // sample_interval_share) # Начинаем с указанной эпохи (полезно при возобновлении) for epoch in range(start_epoch, start_epoch + num_epochs): batch_losses = [] unet.train() for step, (latents, embeddings) in enumerate(dataloader): with accelerator.accumulate(unet): if save_model == False and step == 3 : used_gb = torch.cuda.max_memory_allocated() / 1024**3 print(f"Шаг {step}: {used_gb:.2f} GB") # Forward pass noise = torch.randn_like(latents) timesteps = torch.randint( 0, 1000, (latents.shape[0],), device=device ) / 1000 # Кастим в float # Добавляем шум к латентам noisy_latents = scheduler.add_noise(latents, noise, timesteps) # Получаем предсказание шума noise_pred = unet(noisy_latents, timesteps, embeddings).sample #.to(dtype=torch.bfloat16) # Используем целевое значение v_prediction target = scheduler.get_velocity(latents, noise) # Считаем лосс loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float()) # Делаем backward через Accelerator accelerator.backward(loss) # Увеличиваем счетчик глобальных шагов global_step += 1 # Обновляем прогресс-бар progress_bar.update(1) # Логируем метрики if accelerator.is_main_process: current_lr = base_learning_rate batch_losses.append(loss.detach().item()) # Логируем в Wandb if use_wandb: wandb.log({ "loss": loss.detach().item(), "learning_rate": current_lr, "epoch": epoch, "global_step": global_step }) # Генерируем сэмплы с заданным интервалом if global_step % sample_interval == 0: if save_model: save_checkpoint(unet) generate_and_save_samples(fixed_samples,global_step) # Выводим текущий лосс avg_loss = np.mean(batch_losses[-sample_interval:]) #print(f"Эпоха {epoch}, шаг {global_step}, средний лосс: {avg_loss:.6f}, LR: {current_lr:.8f}") if use_wandb: wandb.log({"intermediate_loss": avg_loss}) # По окончании эпохи if accelerator.is_main_process: avg_epoch_loss = np.mean(batch_losses) print(f"\nЭпоха {epoch} завершена. Средний лосс: {avg_epoch_loss:.6f}") if use_wandb: wandb.log({"epoch_loss": avg_epoch_loss, "epoch": epoch+1}) # Завершение обучения - сохраняем финальную модель if accelerator.is_main_process: print("Обучение завершено! Сохраняем финальную модель...") # Сохраняем основную модель #if save_model: save_checkpoint(unet) print("Готово!")