recoilme commited on
Commit
d7285ac
·
1 Parent(s): 90ef609
samples/sdxs_448x768_0.jpg CHANGED

Git LFS Details

  • SHA256: 678f12999b66f5c0f55cf993665ca25848968d38d105bc38fb527602c9bc3867
  • Pointer size: 130 Bytes
  • Size of remote file: 59.9 kB

Git LFS Details

  • SHA256: 6fa3f4235a06a4870d63e77f4eb0679a4263852bafcc012f0184aef437428567
  • Pointer size: 131 Bytes
  • Size of remote file: 177 kB
samples/sdxs_512x768_0.jpg CHANGED

Git LFS Details

  • SHA256: b1d4d86a455cb8c79600addf8e9abff2edd09fc11f336ff461f604b08a0b9b8f
  • Pointer size: 131 Bytes
  • Size of remote file: 222 kB

Git LFS Details

  • SHA256: 5c7812af24c3ce75f60f59ccb15bd3c663b29b4efb7e1e8c39119f4ffb38d292
  • Pointer size: 131 Bytes
  • Size of remote file: 180 kB
samples/sdxs_576x768_0.jpg CHANGED

Git LFS Details

  • SHA256: bc7a121fb01e732c322d395a9b7bccc04d49feb546d6a11a83c6840621d37c36
  • Pointer size: 131 Bytes
  • Size of remote file: 166 kB

Git LFS Details

  • SHA256: 897215a99ab37515f2e22a0b6a3d599be02c53be7bde85cad755ba1f4a974d63
  • Pointer size: 131 Bytes
  • Size of remote file: 164 kB
samples/sdxs_640x768_0.jpg CHANGED

Git LFS Details

  • SHA256: a7da33c4fa02c0387d12bb08ab936cbccc5f349439629621b95d8adcffcefb98
  • Pointer size: 131 Bytes
  • Size of remote file: 129 kB

Git LFS Details

  • SHA256: 627ac22144952dd916f3f738fa2c3e4005a60956bb715ed5b5b7437d684d6285
  • Pointer size: 131 Bytes
  • Size of remote file: 217 kB
samples/sdxs_704x768_0.jpg CHANGED

Git LFS Details

  • SHA256: a9c0e3a4b3d2a5a9c05f18f23101f8677d8c3a834de228ffeb76f226b0ff1122
  • Pointer size: 131 Bytes
  • Size of remote file: 166 kB

Git LFS Details

  • SHA256: b44719a5e99b82f38c19656b202e7eff3943eaaa387ad17eac9aeb3e163dce5f
  • Pointer size: 131 Bytes
  • Size of remote file: 190 kB
samples/sdxs_768x448_0.jpg CHANGED

Git LFS Details

  • SHA256: 2f2dede37bdf357c842939bc6c7e8f5e9bbe6b837b20635a96e36aaa681e4b80
  • Pointer size: 131 Bytes
  • Size of remote file: 119 kB

Git LFS Details

  • SHA256: e6038215cd191472fcf20301735c78a32bdf8ad8501e39f22aec8b406a0c7a9c
  • Pointer size: 131 Bytes
  • Size of remote file: 114 kB
samples/sdxs_768x512_0.jpg CHANGED

Git LFS Details

  • SHA256: 1b5db0306d82289bcd4b388aba1c3fdfb8357499db76bee719148be933140a5c
  • Pointer size: 131 Bytes
  • Size of remote file: 253 kB

Git LFS Details

  • SHA256: d1b1ba8196147c672820d63c9325d60ac95aba25e36b48ef4fd9b2eba4665aa5
  • Pointer size: 131 Bytes
  • Size of remote file: 186 kB
samples/sdxs_768x576_0.jpg CHANGED

Git LFS Details

  • SHA256: a196afd245d09f3c0f9822f57c721b61da713cf71e973744594be22e26602788
  • Pointer size: 131 Bytes
  • Size of remote file: 158 kB

Git LFS Details

  • SHA256: d22b7077a9b42e2a03b78474f4454e54517e956b15e77d194657a9f445e6c82c
  • Pointer size: 131 Bytes
  • Size of remote file: 148 kB
samples/sdxs_768x640_0.jpg CHANGED

Git LFS Details

  • SHA256: 1536b567a6b422fd77bd8848cfe8869b9019c013fbc52b09dfb0bd8ed67b62eb
  • Pointer size: 131 Bytes
  • Size of remote file: 296 kB

Git LFS Details

  • SHA256: a2078dd47b1fb2c30a9ac48b54a4c99e22361981ec0202b5823b0c337e7b8cac
  • Pointer size: 130 Bytes
  • Size of remote file: 97.8 kB
samples/sdxs_768x704_0.jpg CHANGED

Git LFS Details

  • SHA256: 1bf2497349d6cc2dd6ebae9b47ee4c7ace4f8af16a3247bebf6f9f48b116873e
  • Pointer size: 131 Bytes
  • Size of remote file: 185 kB

Git LFS Details

  • SHA256: 14080e839e323f7dd3b7dcebeacd2c24a724da2393d86e652dbc3fc8905cc609
  • Pointer size: 131 Bytes
  • Size of remote file: 178 kB
samples/sdxs_768x768_0.jpg CHANGED

Git LFS Details

  • SHA256: 790fab8240ace790dae68c55c4e71d6d11282c10889c5e5f62c367a9af523228
  • Pointer size: 131 Bytes
  • Size of remote file: 206 kB

Git LFS Details

  • SHA256: 4336c3ff36ba49af9c409d3087cf236a0380123c0f74052d56fbc039874ebd19
  • Pointer size: 131 Bytes
  • Size of remote file: 149 kB
sdxs/diffusion_pytorch_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ee7be5e5baedf089130cb2e560a2a6927182917f332c38393e92abfe5a32bfc
3
  size 7010934208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac5b45c10bb18c53736919d2519722bd7ae65be46033ed7aca56a3c6fbc38816
3
  size 7010934208
train.py CHANGED
@@ -24,7 +24,7 @@ import bitsandbytes as bnb
24
  # --------------------------- Параметры ---------------------------
25
  save_path = "datasets/768" # "datasets/576" #"datasets/576p2" #"datasets/1152p2" #"datasets/576p2" #"datasets/dataset384_temp" #"datasets/dataset384" #"datasets/imagenet-1kk" #"datasets/siski576" #"datasets/siski384" #"datasets/siski64" #"datasets/mnist"
26
  batch_size = 26 #26 #45 #11 #45 #555 #35 #7
27
- base_learning_rate = 9e-6 #1e-5 #2.5e-5 #4e-6 #9.5e-7 #9e-7 #2e-6 #1e-6 #9e-7 #1e-6 #2e-6 #1e-6 #2e-6 #6e-6 #2e-6 #8e-7 #6e-6 #2e-5 #4e-5 #3e-5 #5e-5 #8e-5
28
  num_epochs = 3 #2 #36 #18
29
  project = "sdxs" #"sdxxxs"
30
  use_wandb = True
@@ -504,8 +504,8 @@ for epoch in range(start_epoch, start_epoch + num_epochs):
504
  target = scheduler.get_velocity(latents, noise, timesteps)
505
 
506
  # Считаем лосс
507
- #loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float())
508
- loss = torch.nn.functional.mse_loss(noise_pred, target)
509
 
510
  # Делаем backward через Accelerator
511
  accelerator.backward(loss)
 
24
  # --------------------------- Параметры ---------------------------
25
  save_path = "datasets/768" # "datasets/576" #"datasets/576p2" #"datasets/1152p2" #"datasets/576p2" #"datasets/dataset384_temp" #"datasets/dataset384" #"datasets/imagenet-1kk" #"datasets/siski576" #"datasets/siski384" #"datasets/siski64" #"datasets/mnist"
26
  batch_size = 26 #26 #45 #11 #45 #555 #35 #7
27
+ base_learning_rate = 8e-6 #9e-6 #1e-5 #2.5e-5 #4e-6 #9.5e-7 #9e-7 #2e-6 #1e-6 #9e-7 #1e-6 #2e-6 #1e-6 #2e-6 #6e-6 #2e-6 #8e-7 #6e-6 #2e-5 #4e-5 #3e-5 #5e-5 #8e-5
28
  num_epochs = 3 #2 #36 #18
29
  project = "sdxs" #"sdxxxs"
30
  use_wandb = True
 
504
  target = scheduler.get_velocity(latents, noise, timesteps)
505
 
506
  # Считаем лосс
507
+ loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float())
508
+ #loss = torch.nn.functional.mse_loss(noise_pred, target)
509
 
510
  # Делаем backward через Accelerator
511
  accelerator.backward(loss)