Update README.md
Browse files
README.md
CHANGED
@@ -15,4 +15,14 @@ The model is initialized from the [bert-base-spanish-wwm-uncased](https://huggin
|
|
15 |
#### Data
|
16 |
|
17 |
The model is fine-tuned on the Spanish version of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multi-lingual machine-translated version of the MS MARCO dataset.
|
18 |
-
The triples are sampled from the ~39.8M triples of [triples.train.small.tsv](https://microsoft.github.io/msmarco/Datasets.html#passage-ranking-dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
#### Data
|
16 |
|
17 |
The model is fine-tuned on the Spanish version of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multi-lingual machine-translated version of the MS MARCO dataset.
|
18 |
+
The triples are sampled from the ~39.8M triples of [triples.train.small.tsv](https://microsoft.github.io/msmarco/Datasets.html#passage-ranking-dataset)
|
19 |
+
|
20 |
+
## Evaluation
|
21 |
+
|
22 |
+
The model is evaluated on the smaller development set of mMARCO-fr, which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compared its performance to a single-vector representation model fine-tuned on the same dataset. We report the mean reciprocal rank (MRR) and recall at various cut-offs (R@k).
|
23 |
+
|
24 |
+
| model | Vocab. | #Param. | Size | MRR@10 | R@50 | R@1000 |
|
25 |
+
|:------------------------------------------------------------------------------------------------------------------------|:--------|--------:|------:|---------:|-------:|--------:|
|
26 |
+
| **ColBERTv1.0-bert-based-spanish-mmarcoES** | spanish | 110M | 443MB | 24.70 | 59,23 | 63.86 |
|
27 |
+
|
28 |
+
|