Initial version.
Browse files- README.md +63 -0
- adapter_config.json +23 -0
- head_config.json +65 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- roberta
|
4 |
+
- adapterhub:deprel/ud_ewt
|
5 |
+
- adapter-transformers
|
6 |
+
datasets:
|
7 |
+
- universal_dependencies
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
---
|
11 |
+
|
12 |
+
# Adapter `AdapterHub/roberta-base-pf-ud_deprel` for roberta-base
|
13 |
+
|
14 |
+
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [deprel/ud_ewt](https://adapterhub.ml/explore/deprel/ud_ewt/) dataset and includes a prediction head for tagging.
|
15 |
+
|
16 |
+
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
First, install `adapter-transformers`:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U adapter-transformers
|
24 |
+
```
|
25 |
+
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
|
26 |
+
|
27 |
+
Now, the adapter can be loaded and activated like this:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoModelWithHeads
|
31 |
+
|
32 |
+
model = AutoModelWithHeads.from_pretrained("roberta-base")
|
33 |
+
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-ud_deprel", source="hf")
|
34 |
+
model.active_adapters = adapter_name
|
35 |
+
```
|
36 |
+
|
37 |
+
## Architecture & Training
|
38 |
+
|
39 |
+
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
|
40 |
+
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
|
41 |
+
|
42 |
+
|
43 |
+
## Evaluation results
|
44 |
+
|
45 |
+
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
|
46 |
+
|
47 |
+
## Citation
|
48 |
+
|
49 |
+
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
|
50 |
+
|
51 |
+
```bibtex
|
52 |
+
@inproceedings{poth-etal-2021-what-to-pre-train-on,
|
53 |
+
title={What to Pre-Train on? Efficient Intermediate Task Selection},
|
54 |
+
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
|
55 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
56 |
+
month = nov,
|
57 |
+
year = "2021",
|
58 |
+
address = "Online",
|
59 |
+
publisher = "Association for Computational Linguistics",
|
60 |
+
url = "https://arxiv.org/abs/2104.08247",
|
61 |
+
pages = "to appear",
|
62 |
+
}
|
63 |
+
```
|
adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"adapter_residual_before_ln": false,
|
4 |
+
"cross_adapter": false,
|
5 |
+
"inv_adapter": null,
|
6 |
+
"inv_adapter_reduction_factor": null,
|
7 |
+
"leave_out": [],
|
8 |
+
"ln_after": false,
|
9 |
+
"ln_before": false,
|
10 |
+
"mh_adapter": false,
|
11 |
+
"non_linearity": "relu",
|
12 |
+
"original_ln_after": true,
|
13 |
+
"original_ln_before": true,
|
14 |
+
"output_adapter": true,
|
15 |
+
"reduction_factor": 16,
|
16 |
+
"residual_before_ln": true
|
17 |
+
},
|
18 |
+
"hidden_size": 768,
|
19 |
+
"model_class": "RobertaModelWithHeads",
|
20 |
+
"model_name": "roberta-base",
|
21 |
+
"model_type": "roberta",
|
22 |
+
"name": "ud_deprel_en_ewt"
|
23 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "tanh",
|
4 |
+
"head_type": "tagging",
|
5 |
+
"label2id": {
|
6 |
+
"_": 0,
|
7 |
+
"acl": 1,
|
8 |
+
"acl:relcl": 2,
|
9 |
+
"advcl": 3,
|
10 |
+
"advmod": 4,
|
11 |
+
"amod": 5,
|
12 |
+
"appos": 6,
|
13 |
+
"aux": 7,
|
14 |
+
"aux:pass": 8,
|
15 |
+
"case": 9,
|
16 |
+
"cc": 10,
|
17 |
+
"cc:preconj": 11,
|
18 |
+
"ccomp": 12,
|
19 |
+
"compound": 13,
|
20 |
+
"compound:prt": 14,
|
21 |
+
"conj": 15,
|
22 |
+
"cop": 16,
|
23 |
+
"csubj": 17,
|
24 |
+
"csubj:pass": 18,
|
25 |
+
"dep": 19,
|
26 |
+
"det": 20,
|
27 |
+
"det:predet": 21,
|
28 |
+
"discourse": 22,
|
29 |
+
"dislocated": 23,
|
30 |
+
"expl": 24,
|
31 |
+
"fixed": 25,
|
32 |
+
"flat": 26,
|
33 |
+
"flat:foreign": 27,
|
34 |
+
"goeswith": 28,
|
35 |
+
"iobj": 29,
|
36 |
+
"list": 30,
|
37 |
+
"mark": 31,
|
38 |
+
"nmod": 32,
|
39 |
+
"nmod:npmod": 33,
|
40 |
+
"nmod:poss": 34,
|
41 |
+
"nmod:tmod": 35,
|
42 |
+
"nsubj": 36,
|
43 |
+
"nsubj:pass": 37,
|
44 |
+
"nummod": 38,
|
45 |
+
"obj": 39,
|
46 |
+
"obl": 40,
|
47 |
+
"obl:npmod": 41,
|
48 |
+
"obl:tmod": 42,
|
49 |
+
"orphan": 43,
|
50 |
+
"parataxis": 44,
|
51 |
+
"punct": 45,
|
52 |
+
"reparandum": 46,
|
53 |
+
"root": 47,
|
54 |
+
"vocative": 48,
|
55 |
+
"xcomp": 49
|
56 |
+
},
|
57 |
+
"layers": 1,
|
58 |
+
"num_labels": 50
|
59 |
+
},
|
60 |
+
"hidden_size": 768,
|
61 |
+
"model_class": "RobertaModelWithHeads",
|
62 |
+
"model_name": "roberta-base",
|
63 |
+
"model_type": "roberta",
|
64 |
+
"name": "ud_deprel_en_ewt"
|
65 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4572f8a003239573b6da8a935adf5a1137a1d6939b2f8e0dde8d9b390af2edce
|
3 |
+
size 3595311
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb024289ac6e50e9aeb0a53d7b0d5783a9bde7fa7759099616e23a6146ac55f9
|
3 |
+
size 154871
|