Commit
·
7fe3857
1
Parent(s):
e22d59d
Upload 5 files
Browse files- README.md +11 -7
- app.py +213 -394
- requirements (1).txt +27 -0
- requirements (2).txt +27 -0
- requirements.txt +19 -0
README.md
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
- Fazzie/Teyvat
|
| 7 |
-
- Guizmus/AnimeChanStyle
|
| 8 |
-
- poloclub/diffusiondb
|
| 9 |
-
---
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Finetuned Diffusion
|
| 3 |
+
emoji: 🪄🖼️
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.18.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,164 +1,21 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import json
|
| 3 |
-
import shutil
|
| 4 |
-
import sqlite3
|
| 5 |
-
import subprocess
|
| 6 |
-
import sys
|
| 7 |
-
sys.path.append('src/blip')
|
| 8 |
-
sys.path.append('src/clip')
|
| 9 |
-
import clip
|
| 10 |
-
import hashlib
|
| 11 |
-
import math
|
| 12 |
-
import numpy as np
|
| 13 |
-
import pickle
|
| 14 |
-
import torchvision.transforms as T
|
| 15 |
-
import torchvision.transforms.functional as TF
|
| 16 |
-
import requests
|
| 17 |
-
import wget
|
| 18 |
-
import gradio as grad, random, re
|
| 19 |
import torch
|
| 20 |
-
import
|
| 21 |
import utils
|
| 22 |
-
import
|
| 23 |
-
import re
|
| 24 |
-
import base64
|
| 25 |
-
import subprocess
|
| 26 |
-
import argparse
|
| 27 |
-
import logging
|
| 28 |
-
import streamlit as st
|
| 29 |
-
import pandas as pd
|
| 30 |
-
import datasets
|
| 31 |
-
import yaml
|
| 32 |
-
import textwrap
|
| 33 |
-
import tornado
|
| 34 |
import time
|
| 35 |
-
import
|
| 36 |
-
|
| 37 |
-
from diffusers import StableDiffusionPipeline
|
| 38 |
-
from transformers import pipeline, set_seed
|
| 39 |
-
from huggingface_hub import HfApi
|
| 40 |
-
from huggingface_hub import hf_hub_download
|
| 41 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
| 42 |
-
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 43 |
-
from diffusers import StableDiffusionImg2ImgPipeline
|
| 44 |
-
from PIL import Image
|
| 45 |
-
from datasets import load_dataset
|
| 46 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 47 |
-
from io import BytesIO
|
| 48 |
-
from models.blip import blip_decoder
|
| 49 |
-
from torch import nn
|
| 50 |
-
from torch.nn import functional as F
|
| 51 |
-
from tqdm import tqdm
|
| 52 |
-
from pathlib import Path
|
| 53 |
-
from flask import Flask, request, jsonify, g
|
| 54 |
-
from flask_expects_json import expects_json
|
| 55 |
-
from flask_cors import CORS
|
| 56 |
-
from huggingface_hub import Repository
|
| 57 |
-
from flask_apscheduler import APScheduler
|
| 58 |
-
from jsonschema import ValidationError
|
| 59 |
-
from os import mkdir
|
| 60 |
-
from os.path import isdir
|
| 61 |
-
from colorthief import ColorThief
|
| 62 |
-
from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls
|
| 63 |
-
from utils import dataset_utils
|
| 64 |
-
from utils import streamlit_utils as st_utils
|
| 65 |
-
from dataclasses import asdict
|
| 66 |
-
from .transfer import transfer_color
|
| 67 |
-
from .utils import convert_bytes_to_pil
|
| 68 |
-
from diffusers import DiffusionPipeline
|
| 69 |
-
from huggingface_hub.inference_api import InferenceApi
|
| 70 |
-
from huggingface_hub import login
|
| 71 |
-
from datasets import load_dataset
|
| 72 |
-
#from torch import autocast
|
| 73 |
-
#from diffusers import StableDiffusionPipeline
|
| 74 |
-
#from io import BytesIO
|
| 75 |
-
#import base64
|
| 76 |
-
#import torch
|
| 77 |
-
|
| 78 |
-
is_colab = utils.is_google_colab()
|
| 79 |
-
|
| 80 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 81 |
-
|
| 82 |
-
from huggingface_hub import login
|
| 83 |
-
login()
|
| 84 |
-
|
| 85 |
-
from huggingface_hub.inference_api import InferenceApi
|
| 86 |
-
inference = InferenceApi(repo_id="bert-base-uncased", token=API_TOKEN)
|
| 87 |
-
|
| 88 |
-
from datasets import load_dataset
|
| 89 |
-
|
| 90 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
| 91 |
-
|
| 92 |
-
from datasets import load_dataset
|
| 93 |
-
|
| 94 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
| 95 |
-
|
| 96 |
-
from datasets import load_dataset
|
| 97 |
-
|
| 98 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
| 99 |
-
|
| 100 |
-
from datasets import load_dataset
|
| 101 |
-
|
| 102 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 103 |
-
|
| 104 |
-
from datasets import load_dataset
|
| 105 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
| 106 |
-
from datasets import load_dataset
|
| 107 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
| 108 |
-
from datasets import load_dataset
|
| 109 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
| 110 |
-
from datasets import load_dataset
|
| 111 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 112 |
-
|
| 113 |
-
from datasets import load_dataset
|
| 114 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
| 115 |
-
|
| 116 |
-
from datasets import load_dataset
|
| 117 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
| 118 |
-
|
| 119 |
-
from datasets import load_dataset
|
| 120 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
| 121 |
-
|
| 122 |
-
from datasets import load_dataset
|
| 123 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 136 |
-
|
| 137 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
| 138 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
| 139 |
-
dataset = load_dataset("poloclub/diffusiondb")
|
| 140 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 141 |
-
|
| 142 |
-
dataset = load_dataset("Fazzie/Teyvat")
|
| 143 |
|
| 144 |
-
dataset = load_dataset("Guizmus/AnimeChanStyle")
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
sys.path.append('src/blip')
|
| 151 |
-
sys.path.append('src/clip')
|
| 152 |
-
|
| 153 |
-
pipeline = DiffusionPipeline.from_pretrained("flax/waifu-diffusion")
|
| 154 |
-
pipeline = DiffusionPipeline.from_pretrained("flax/Cyberpunk-Anime-Diffusion")
|
| 155 |
-
pipeline = DiffusionPipeline.from_pretrained("technillogue/waifu-diffusion")
|
| 156 |
-
pipeline = DiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-Pokemon-en")
|
| 157 |
-
pipeline = DiffusionPipeline.from_pretrained("AdamOswald1/Idk")
|
| 158 |
-
pipeline = DiffusionPipeline.from_pretrained("katakana/2D-Mix")
|
| 159 |
|
| 160 |
class Model:
|
| 161 |
-
def __init__(self, name, path, prefix):
|
| 162 |
self.name = name
|
| 163 |
self.path = path
|
| 164 |
self.prefix = prefix
|
|
@@ -166,179 +23,36 @@ class Model:
|
|
| 166 |
self.pipe_i2i = None
|
| 167 |
|
| 168 |
models = [
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
Model("Genshin", "Eppinette/Mona", "Mona"),
|
| 195 |
-
Model("Genshin", "Eppinette/Mona", "Mona Woman"),
|
| 196 |
-
Model("Genshin", "Eppinette/Mona", "Mona Genshin"),
|
| 197 |
-
Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
|
| 198 |
-
Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
|
| 199 |
-
Model("TARDIS", "Guizmus/Tardisfusion", "Classic Tardis style"),
|
| 200 |
-
Model("TARDIS", "Guizmus/Tardisfusion", "Modern Tardis style"),
|
| 201 |
-
Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"),
|
| 202 |
-
Model("Spacecraft", "Guizmus/Tardisfusion", "Classic Tardis style"),
|
| 203 |
-
Model("Spacecraft", "Guizmus/Tardisfusion", "Modern Tardis style"),
|
| 204 |
-
Model("Spacecraft", "Guizmus/Tardisfusion", "Tardis Box style"),
|
| 205 |
-
Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"),
|
| 206 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswap"),
|
| 207 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswap with"),
|
| 208 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswapped"),
|
| 209 |
-
Model("Face Swap", "felixrosberg/face-swap", "faceswapped with"),
|
| 210 |
-
Model("Face Swap", "felixrosberg/face-swap", "face on"),
|
| 211 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "lumine_genshin"),
|
| 212 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "lumine"),
|
| 213 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
|
| 214 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
|
| 215 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
|
| 216 |
-
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine"),
|
| 217 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
|
| 218 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
|
| 219 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine"),
|
| 220 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
|
| 221 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "lumine"),
|
| 222 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
|
| 223 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
|
| 224 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
|
| 225 |
-
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
|
| 226 |
-
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
|
| 227 |
-
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
|
| 228 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "raiden_ei"),
|
| 229 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Ei"),
|
| 230 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei Genshin"),
|
| 231 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
|
| 232 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
|
| 233 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
|
| 234 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden"),
|
| 235 |
-
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei"),
|
| 236 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Ei"),
|
| 237 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "raiden_ei"),
|
| 238 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden"),
|
| 239 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
|
| 240 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei Genshin"),
|
| 241 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
|
| 242 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
|
| 243 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei"),
|
| 244 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
|
| 245 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
|
| 246 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
|
| 247 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao"),
|
| 248 |
-
Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
|
| 249 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "hutao_genshin"),
|
| 250 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
|
| 251 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
|
| 252 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao"),
|
| 253 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Female"),
|
| 254 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "female"),
|
| 255 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Woman"),
|
| 256 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "woman"),
|
| 257 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Girl"),
|
| 258 |
-
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "girl"),
|
| 259 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Female"),
|
| 260 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "female"),
|
| 261 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Woman"),
|
| 262 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "woman"),
|
| 263 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "Girl"),
|
| 264 |
-
Model("Genshin", "Fampai/lumine_genshin_impact", "girl"),
|
| 265 |
-
Model("Genshin", "Eppinette/Mona", "Female"),
|
| 266 |
-
Model("Genshin", "Eppinette/Mona", "female"),
|
| 267 |
-
Model("Genshin", "Eppinette/Mona", "Woman"),
|
| 268 |
-
Model("Genshin", "Eppinette/Mona", "woman"),
|
| 269 |
-
Model("Genshin", "Eppinette/Mona", "Girl"),
|
| 270 |
-
Model("Genshin", "Eppinette/Mona", "girl"),
|
| 271 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Female"),
|
| 272 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "female"),
|
| 273 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Woman"),
|
| 274 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "woman"),
|
| 275 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Girl"),
|
| 276 |
-
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "girl"),
|
| 277 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Female"),
|
| 278 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "female"),
|
| 279 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Woman"),
|
| 280 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "woman"),
|
| 281 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "Girl"),
|
| 282 |
-
Model("Genshin", "Fampai/raiden_genshin_impact", "girl"),
|
| 283 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "Female"),
|
| 284 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "female"),
|
| 285 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "Woman"),
|
| 286 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "woman"),
|
| 287 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "Girl"),
|
| 288 |
-
Model("Genshin", "Fampai/hutao_genshin_impact", "girl"),
|
| 289 |
-
Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin"),
|
| 290 |
-
Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin Impact"),
|
| 291 |
-
Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", ""),
|
| 292 |
-
Model("Waifu", "crumb/genshin-stable-inversion", "Genshin"),
|
| 293 |
-
Model("Waifu", "crumb/genshin-stable-inversion", "Genshin Impact"),
|
| 294 |
-
Model("Genshin", "crumb/genshin-stable-inversion", ""),
|
| 295 |
-
Model("Waifu", "yuiqena/GenshinImpact", "Genshin"),
|
| 296 |
-
Model("Waifu", "yuiqena/GenshinImpact", "Genshin Impact"),
|
| 297 |
-
Model("Genshin", "yuiqena/GenshinImpact", ""),
|
| 298 |
-
Model("Waifu", "hakurei/waifu-diffusion, flax/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
|
| 299 |
-
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", "pokemon style"),
|
| 300 |
-
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", ""),
|
| 301 |
-
Model("Test", "AdamoOswald1/Idk", ""),
|
| 302 |
-
Model("Anime", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
|
| 303 |
-
Model("Genshin", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
|
| 304 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
|
| 305 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin"),
|
| 306 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin Impact"),
|
| 307 |
-
Model("Genshin", "Guizmus/AnimeChanStyle", ""),
|
| 308 |
-
Model("Anime", "Guizmus/AnimeChanStyle", ""),
|
| 309 |
-
Model("Waifu", "Guizmus/AnimeChanStyle", ""),
|
| 310 |
-
Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
|
| 311 |
-
Model("Anime", "katakana/2D-Mix", "2D-Mix"),
|
| 312 |
-
Model("Genshin", "katakana/2D-Mix", "2D-Mix"),
|
| 313 |
-
Model("Waifu", "katakana/2D-Mix", "2D-Mix"),
|
| 314 |
-
Model("Waifu", "katakana/2D-Mix", "Genshin"),
|
| 315 |
-
Model("Waifu", "katakana/2D-Mix", "Genshin Impact"),
|
| 316 |
-
Model("Genshin", "katakana/2D-Mix", ""),
|
| 317 |
-
Model("Anime", "katakana/2D-Mix", ""),
|
| 318 |
-
Model("Waifu", "katakana/2D-Mix", ""),
|
| 319 |
-
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
| 320 |
-
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
| 321 |
-
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ")
|
| 322 |
]
|
| 323 |
-
# Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
|
| 324 |
-
# Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
|
| 325 |
-
|
| 326 |
-
scheduler = DPMSolverMultistepScheduler(
|
| 327 |
-
beta_start=0.00085,
|
| 328 |
-
beta_end=0.012,
|
| 329 |
-
beta_schedule="scaled_linear",
|
| 330 |
-
num_train_timesteps=1000,
|
| 331 |
-
trained_betas=None,
|
| 332 |
-
predict_epsilon=True,
|
| 333 |
-
thresholding=False,
|
| 334 |
-
algorithm_type="dpmsolver++",
|
| 335 |
-
solver_type="midpoint",
|
| 336 |
-
lower_order_final=True,
|
| 337 |
-
)
|
| 338 |
|
| 339 |
custom_model = None
|
| 340 |
if is_colab:
|
| 341 |
-
models.insert(0, Model("Custom model"
|
| 342 |
custom_model = models[0]
|
| 343 |
|
| 344 |
last_mode = "txt2img"
|
|
@@ -346,41 +60,61 @@ current_model = models[1] if is_colab else models[0]
|
|
| 346 |
current_model_path = current_model.path
|
| 347 |
|
| 348 |
if is_colab:
|
| 349 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
| 364 |
-
for model in models:
|
| 365 |
-
try:
|
| 366 |
-
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
| 367 |
-
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 368 |
-
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 369 |
-
except:
|
| 370 |
-
models.remove(model)
|
| 371 |
-
pipe = models[0].pipe_t2i
|
| 372 |
-
|
| 373 |
if torch.cuda.is_available():
|
| 374 |
pipe = pipe.to("cuda")
|
|
|
|
| 375 |
|
| 376 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
def custom_model_changed(path):
|
| 379 |
models[0].path = path
|
| 380 |
global current_model
|
| 381 |
current_model = models[0]
|
| 382 |
|
| 383 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
global current_model
|
| 386 |
for model in models:
|
|
@@ -388,14 +122,23 @@ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0
|
|
| 388 |
current_model = model
|
| 389 |
model_path = current_model.path
|
| 390 |
|
| 391 |
-
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
-
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator
|
|
|
|
|
|
|
| 399 |
|
| 400 |
global last_mode
|
| 401 |
global pipe
|
|
@@ -403,29 +146,48 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
| 403 |
if model_path != current_model_path or last_mode != "txt2img":
|
| 404 |
current_model_path = model_path
|
| 405 |
|
|
|
|
|
|
|
| 406 |
if is_colab or current_model == custom_model:
|
| 407 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
else:
|
| 409 |
-
pipe.
|
| 410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
if torch.cuda.is_available():
|
| 413 |
pipe = pipe.to("cuda")
|
|
|
|
| 414 |
last_mode = "txt2img"
|
| 415 |
|
| 416 |
prompt = current_model.prefix + prompt
|
| 417 |
result = pipe(
|
| 418 |
prompt,
|
| 419 |
negative_prompt = neg_prompt,
|
| 420 |
-
|
| 421 |
num_inference_steps = int(steps),
|
| 422 |
guidance_scale = guidance,
|
| 423 |
width = width,
|
| 424 |
height = height,
|
| 425 |
-
generator = generator
|
| 426 |
-
|
| 427 |
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
global last_mode
|
| 431 |
global pipe
|
|
@@ -433,14 +195,27 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
| 433 |
if model_path != current_model_path or last_mode != "img2img":
|
| 434 |
current_model_path = model_path
|
| 435 |
|
|
|
|
|
|
|
| 436 |
if is_colab or current_model == custom_model:
|
| 437 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
else:
|
| 439 |
-
pipe.
|
| 440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
|
| 442 |
if torch.cuda.is_available():
|
| 443 |
pipe = pipe.to("cuda")
|
|
|
|
| 444 |
last_mode = "img2img"
|
| 445 |
|
| 446 |
prompt = current_model.prefix + prompt
|
|
@@ -449,32 +224,48 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
| 449 |
result = pipe(
|
| 450 |
prompt,
|
| 451 |
negative_prompt = neg_prompt,
|
| 452 |
-
|
| 453 |
-
|
| 454 |
num_inference_steps = int(steps),
|
| 455 |
strength = strength,
|
| 456 |
guidance_scale = guidance,
|
| 457 |
-
width = width,
|
| 458 |
-
height = height,
|
| 459 |
-
generator = generator
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
gr.HTML(
|
| 465 |
f"""
|
| 466 |
<div class="finetuned-diffusion-div">
|
| 467 |
<div>
|
| 468 |
-
<h1>
|
| 469 |
</div>
|
| 470 |
<p>
|
| 471 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
| 476 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
| 477 |
</p>
|
|
|
|
|
|
|
| 478 |
</div>
|
| 479 |
"""
|
| 480 |
)
|
|
@@ -492,25 +283,26 @@ with gr.Blocks(css=css) as demo:
|
|
| 492 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
| 493 |
|
| 494 |
|
| 495 |
-
image_out = gr.Image(height=512)
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
| 499 |
|
| 500 |
with gr.Column(scale=45):
|
| 501 |
with gr.Tab("Options"):
|
| 502 |
with gr.Group():
|
| 503 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
| 504 |
|
| 505 |
-
|
| 506 |
|
| 507 |
with gr.Row():
|
| 508 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
| 509 |
-
steps = gr.Slider(label="Steps", value=
|
| 510 |
|
| 511 |
with gr.Row():
|
| 512 |
-
width = gr.Slider(label="Width", value=512, minimum=64, maximum=
|
| 513 |
-
height = gr.Slider(label="Height", value=512, minimum=64, maximum=
|
| 514 |
|
| 515 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
| 516 |
|
|
@@ -520,14 +312,41 @@ with gr.Blocks(css=css) as demo:
|
|
| 520 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 521 |
|
| 522 |
if is_colab:
|
| 523 |
-
|
| 524 |
-
|
| 525 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
prompt
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
import utils
|
| 6 |
+
import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import time
|
| 8 |
+
import psutil
|
| 9 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
+
start_time = time.time()
|
| 13 |
+
is_colab = utils.is_google_colab()
|
| 14 |
+
state = None
|
| 15 |
+
current_steps = 25
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
class Model:
|
| 18 |
+
def __init__(self, name, path="", prefix=""):
|
| 19 |
self.name = name
|
| 20 |
self.path = path
|
| 21 |
self.prefix = prefix
|
|
|
|
| 23 |
self.pipe_i2i = None
|
| 24 |
|
| 25 |
models = [
|
| 26 |
+
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
| 27 |
+
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
| 28 |
+
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
| 29 |
+
Model("Anything V3", "Linaqruf/anything-v3.0", ""),
|
| 30 |
+
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
|
| 31 |
+
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
|
| 32 |
+
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
|
| 33 |
+
Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
|
| 34 |
+
Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
|
| 35 |
+
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
|
| 36 |
+
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
|
| 37 |
+
Model("Waifu", "hakurei/waifu-diffusion"),
|
| 38 |
+
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
| 39 |
+
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
| 40 |
+
Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
|
| 41 |
+
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
| 42 |
+
Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
|
| 43 |
+
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
|
| 44 |
+
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
|
| 45 |
+
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
|
| 46 |
+
Model("Robo Diffusion", "nousr/robo-diffusion"),
|
| 47 |
+
Model("Epic Diffusion", "johnslegers/epic-diffusion"),
|
| 48 |
+
Model("Modern Era TARDIS Interior", "Guizmus/Tardisfusion", "Modern Tardis style"),
|
| 49 |
+
Model("Classic Era TARDIS Interior", "Guizmus/Tardisfusion", "Classic Tardis style"),
|
| 50 |
+
Model("Cyber-Genshin", "AdamOswald1/Cyberpunk-Anime-Diffusion_with_support_for_Gen-Imp_characters", "Teyvat, Teyvat Style, cyberware_style, m_cyberware, Cyberware, Cyberware style, m_cyberware style, cyberware style, dgs illustration style, genshin impact style, ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
custom_model = None
|
| 54 |
if is_colab:
|
| 55 |
+
models.insert(0, Model("Custom model"))
|
| 56 |
custom_model = models[0]
|
| 57 |
|
| 58 |
last_mode = "txt2img"
|
|
|
|
| 60 |
current_model_path = current_model.path
|
| 61 |
|
| 62 |
if is_colab:
|
| 63 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 64 |
+
current_model.path,
|
| 65 |
+
torch_dtype=torch.float16,
|
| 66 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
| 67 |
+
safety_checker=lambda images, clip_input: (images, False)
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
else:
|
| 71 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 72 |
+
current_model.path,
|
| 73 |
+
torch_dtype=torch.float16,
|
| 74 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
| 75 |
+
)
|
| 76 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
if torch.cuda.is_available():
|
| 78 |
pipe = pipe.to("cuda")
|
| 79 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 80 |
|
| 81 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 82 |
|
| 83 |
+
def error_str(error, title="Error"):
|
| 84 |
+
return f"""#### {title}
|
| 85 |
+
{error}""" if error else ""
|
| 86 |
+
|
| 87 |
+
def update_state(new_state):
|
| 88 |
+
global state
|
| 89 |
+
state = new_state
|
| 90 |
+
|
| 91 |
+
def update_state_info(old_state):
|
| 92 |
+
if state and state != old_state:
|
| 93 |
+
return gr.update(value=state)
|
| 94 |
+
|
| 95 |
def custom_model_changed(path):
|
| 96 |
models[0].path = path
|
| 97 |
global current_model
|
| 98 |
current_model = models[0]
|
| 99 |
|
| 100 |
+
def on_model_change(model_name):
|
| 101 |
+
|
| 102 |
+
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
| 103 |
+
|
| 104 |
+
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
| 105 |
+
|
| 106 |
+
def on_steps_change(steps):
|
| 107 |
+
global current_steps
|
| 108 |
+
current_steps = steps
|
| 109 |
+
|
| 110 |
+
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
| 111 |
+
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
| 112 |
+
|
| 113 |
+
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
| 114 |
+
|
| 115 |
+
update_state(" ")
|
| 116 |
+
|
| 117 |
+
print(psutil.virtual_memory()) # print memory usage
|
| 118 |
|
| 119 |
global current_model
|
| 120 |
for model in models:
|
|
|
|
| 122 |
current_model = model
|
| 123 |
model_path = current_model.path
|
| 124 |
|
| 125 |
+
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
| 126 |
+
if seed == 0:
|
| 127 |
+
seed = random.randint(0, 2147483647)
|
| 128 |
+
|
| 129 |
+
generator = torch.Generator('cuda').manual_seed(seed)
|
| 130 |
|
| 131 |
+
try:
|
| 132 |
+
if img is not None:
|
| 133 |
+
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
| 134 |
+
else:
|
| 135 |
+
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
| 136 |
+
except Exception as e:
|
| 137 |
+
return None, error_str(e)
|
| 138 |
|
| 139 |
+
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
| 140 |
+
|
| 141 |
+
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
| 142 |
|
| 143 |
global last_mode
|
| 144 |
global pipe
|
|
|
|
| 146 |
if model_path != current_model_path or last_mode != "txt2img":
|
| 147 |
current_model_path = model_path
|
| 148 |
|
| 149 |
+
update_state(f"Loading {current_model.name} text-to-image model...")
|
| 150 |
+
|
| 151 |
if is_colab or current_model == custom_model:
|
| 152 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 153 |
+
current_model_path,
|
| 154 |
+
torch_dtype=torch.float16,
|
| 155 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
| 156 |
+
safety_checker=lambda images, clip_input: (images, False)
|
| 157 |
+
)
|
| 158 |
else:
|
| 159 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 160 |
+
current_model_path,
|
| 161 |
+
torch_dtype=torch.float16,
|
| 162 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
| 163 |
+
)
|
| 164 |
+
# pipe = pipe.to("cpu")
|
| 165 |
+
# pipe = current_model.pipe_t2i
|
| 166 |
|
| 167 |
if torch.cuda.is_available():
|
| 168 |
pipe = pipe.to("cuda")
|
| 169 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 170 |
last_mode = "txt2img"
|
| 171 |
|
| 172 |
prompt = current_model.prefix + prompt
|
| 173 |
result = pipe(
|
| 174 |
prompt,
|
| 175 |
negative_prompt = neg_prompt,
|
| 176 |
+
num_images_per_prompt=n_images,
|
| 177 |
num_inference_steps = int(steps),
|
| 178 |
guidance_scale = guidance,
|
| 179 |
width = width,
|
| 180 |
height = height,
|
| 181 |
+
generator = generator,
|
| 182 |
+
callback=pipe_callback)
|
| 183 |
|
| 184 |
+
# update_state(f"Done. Seed: {seed}")
|
| 185 |
+
|
| 186 |
+
return replace_nsfw_images(result)
|
| 187 |
+
|
| 188 |
+
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
| 189 |
+
|
| 190 |
+
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
| 191 |
|
| 192 |
global last_mode
|
| 193 |
global pipe
|
|
|
|
| 195 |
if model_path != current_model_path or last_mode != "img2img":
|
| 196 |
current_model_path = model_path
|
| 197 |
|
| 198 |
+
update_state(f"Loading {current_model.name} image-to-image model...")
|
| 199 |
+
|
| 200 |
if is_colab or current_model == custom_model:
|
| 201 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 202 |
+
current_model_path,
|
| 203 |
+
torch_dtype=torch.float16,
|
| 204 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
| 205 |
+
safety_checker=lambda images, clip_input: (images, False)
|
| 206 |
+
)
|
| 207 |
else:
|
| 208 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 209 |
+
current_model_path,
|
| 210 |
+
torch_dtype=torch.float16,
|
| 211 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
| 212 |
+
)
|
| 213 |
+
# pipe = pipe.to("cpu")
|
| 214 |
+
# pipe = current_model.pipe_i2i
|
| 215 |
|
| 216 |
if torch.cuda.is_available():
|
| 217 |
pipe = pipe.to("cuda")
|
| 218 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 219 |
last_mode = "img2img"
|
| 220 |
|
| 221 |
prompt = current_model.prefix + prompt
|
|
|
|
| 224 |
result = pipe(
|
| 225 |
prompt,
|
| 226 |
negative_prompt = neg_prompt,
|
| 227 |
+
num_images_per_prompt=n_images,
|
| 228 |
+
image = img,
|
| 229 |
num_inference_steps = int(steps),
|
| 230 |
strength = strength,
|
| 231 |
guidance_scale = guidance,
|
| 232 |
+
# width = width,
|
| 233 |
+
# height = height,
|
| 234 |
+
generator = generator,
|
| 235 |
+
callback=pipe_callback)
|
| 236 |
+
|
| 237 |
+
# update_state(f"Done. Seed: {seed}")
|
| 238 |
|
| 239 |
+
return replace_nsfw_images(result)
|
| 240 |
+
|
| 241 |
+
def replace_nsfw_images(results):
|
| 242 |
+
|
| 243 |
+
if is_colab:
|
| 244 |
+
return results.images
|
| 245 |
+
|
| 246 |
+
for i in range(len(results.images)):
|
| 247 |
+
if results.nsfw_content_detected[i]:
|
| 248 |
+
results.images[i] = Image.open("nsfw.png")
|
| 249 |
+
return results.images
|
| 250 |
+
|
| 251 |
+
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
| 252 |
+
# """
|
| 253 |
+
with gr.Blocks(css="style.css") as demo:
|
| 254 |
gr.HTML(
|
| 255 |
f"""
|
| 256 |
<div class="finetuned-diffusion-div">
|
| 257 |
<div>
|
| 258 |
+
<h1>Finetuned Diffusion</h1>
|
| 259 |
</div>
|
| 260 |
<p>
|
| 261 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
| 262 |
+
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
| 263 |
+
</p>
|
| 264 |
+
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
|
|
|
| 265 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
| 266 |
</p>
|
| 267 |
+
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
|
| 268 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
| 269 |
</div>
|
| 270 |
"""
|
| 271 |
)
|
|
|
|
| 283 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
| 284 |
|
| 285 |
|
| 286 |
+
# image_out = gr.Image(height=512)
|
| 287 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
| 288 |
+
|
| 289 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
| 290 |
+
error_output = gr.Markdown()
|
| 291 |
|
| 292 |
with gr.Column(scale=45):
|
| 293 |
with gr.Tab("Options"):
|
| 294 |
with gr.Group():
|
| 295 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
| 296 |
|
| 297 |
+
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=16, step=1)
|
| 298 |
|
| 299 |
with gr.Row():
|
| 300 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
| 301 |
+
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=100, step=1)
|
| 302 |
|
| 303 |
with gr.Row():
|
| 304 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=2048, step=8)
|
| 305 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=2048, step=8)
|
| 306 |
|
| 307 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
| 308 |
|
|
|
|
| 312 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 313 |
|
| 314 |
if is_colab:
|
| 315 |
+
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
| 316 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
| 317 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
| 318 |
+
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
| 319 |
+
|
| 320 |
+
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
| 321 |
+
outputs = [gallery, error_output]
|
| 322 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 323 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
| 324 |
+
|
| 325 |
+
ex = gr.Examples([
|
| 326 |
+
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
| 327 |
+
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
| 328 |
+
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
|
| 329 |
+
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
| 330 |
+
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
| 331 |
+
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
| 332 |
+
|
| 333 |
+
gr.HTML("""
|
| 334 |
+
<div style="border-top: 1px solid #303030;">
|
| 335 |
+
<br>
|
| 336 |
+
<p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
|
| 337 |
+
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
| 338 |
+
<p>Space by:<br>
|
| 339 |
+
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
|
| 340 |
+
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
|
| 341 |
+
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
|
| 342 |
+
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
| 343 |
+
</div>
|
| 344 |
+
""")
|
| 345 |
+
|
| 346 |
+
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
| 347 |
+
|
| 348 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
| 349 |
+
|
| 350 |
+
# if not is_colab:
|
| 351 |
+
demo.queue(concurrency_count=1)
|
| 352 |
+
demo.launch(debug=is_colab, share=is_colab)
|
requirements (1).txt
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
+
numpy
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
diffusers
|
| 6 |
+
#diffusers
|
| 7 |
+
#git+https://github.com/huggingface/diffusers.git
|
| 8 |
+
#git+https://github.com/huggingface/diffusers
|
| 9 |
+
git+https://github.com/huggingface/diffusers.git
|
| 10 |
+
git+https://github.com/huggingface/diffusers
|
| 11 |
+
transformers
|
| 12 |
+
#transformers
|
| 13 |
+
#git+https://github.com/huggingface/transformers
|
| 14 |
+
git+https://github.com/huggingface/transformers
|
| 15 |
+
scipy
|
| 16 |
+
ftfy
|
| 17 |
+
psutil
|
| 18 |
+
accelerate
|
| 19 |
+
OmegaConf
|
| 20 |
+
pytorch_lightning
|
| 21 |
+
#OmegaConf
|
| 22 |
+
#pytorch_lightning
|
| 23 |
+
triton
|
| 24 |
+
xformers
|
| 25 |
+
#xformers
|
| 26 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
| 27 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+bc08bbc.d20230123-cp38-cp38-linux_x86_64.whl
|
requirements (2).txt
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
+
numpy
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
accelerate
|
| 6 |
+
transformers
|
| 7 |
+
#transformers
|
| 8 |
+
#git+https://github.com/huggingface/transformers
|
| 9 |
+
git+https://github.com/huggingface/transformers
|
| 10 |
+
diffusers
|
| 11 |
+
#diffusers
|
| 12 |
+
#git+https://github.com/huggingface/diffusers.git
|
| 13 |
+
#git+https://github.com/huggingface/diffusers
|
| 14 |
+
git+https://github.com/huggingface/diffusers.git
|
| 15 |
+
git+https://github.com/huggingface/diffusers
|
| 16 |
+
scipy
|
| 17 |
+
ftfy
|
| 18 |
+
psutil
|
| 19 |
+
OmegaConf
|
| 20 |
+
pytorch_lightning
|
| 21 |
+
#OmegaConf
|
| 22 |
+
#pytorch_lightning
|
| 23 |
+
triton
|
| 24 |
+
xformers
|
| 25 |
+
#xformers
|
| 26 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
| 27 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+bc08bbc.d20230123-cp38-cp38-linux_x86_64.whl
|
requirements.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
+
numpy
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
#diffusers
|
| 6 |
+
git+https://github.com/huggingface/diffusers.git
|
| 7 |
+
#transformers
|
| 8 |
+
git+https://github.com/huggingface/transformers
|
| 9 |
+
scipy
|
| 10 |
+
ftfy
|
| 11 |
+
psutil
|
| 12 |
+
accelerate
|
| 13 |
+
#OmegaConf
|
| 14 |
+
#pytorch_lightning
|
| 15 |
+
triton
|
| 16 |
+
xformers
|
| 17 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
| 18 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+bc08bbc.d20230123-cp38-cp38-linux_x86_64.whl
|
| 19 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+814314d.d20230119.A10G-cp310-cp310-linux_x86_64.whl
|