File size: 28,498 Bytes
1153765
 
 
 
 
 
 
 
 
 
 
 
 
 
a19f3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
1153765
 
a19f3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153765
 
a19f3ef
 
 
1153765
a19f3ef
 
 
 
 
 
 
 
 
 
 
 
1153765
a19f3ef
 
 
1153765
 
a19f3ef
 
 
 
 
 
 
 
 
 
 
 
1153765
a19f3ef
 
 
 
 
 
1153765
a19f3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153765
a19f3ef
 
 
1153765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19f3ef
 
1153765
 
 
 
013a786
1153765
 
 
 
 
 
 
 
 
 
013a786
1153765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fcb63
1153765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013a786
1153765
013a786
1153765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013a786
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: >-
    this information about the two documents withheld in part under the
    deliberative-process 

    128 
     
    privilege in No. 11-444, see First Lutz Decl. Ex. DD at 17, 141, but the
    descriptions of the 

    decisionmaking authority are generic, stating that the withheld information
    is a “recommendation 

    from the [FOIA] analyst to his/her supervisor,” id. at 17, and a
    “recommendation from the
  sentences:
  - What did the plaintiff assert about the CIA's inaccurate representations?
  - >-
    What type of document is mentioned as an exhibit in conjunction with the
    withheld documents?
  - >-
    ¿Qué ámbito jurisdiccional es mencionado en el contexto de derechos sobre la
    propia imagen?
- source_sentence: |-
    Artificial Intelligence, Corp. y que prestaba servicios mediante 
    contrato para el Departamento de Producción de tal corporación. 
    Adujo que, no se encontraba en la obligación de solicitar 
    autorización a la parte apelada para utilizar su imagen, ya que se le 
    había pagado por la producción de múltiples videos publicitarios 
    para el uso de las empresas.  
    Luego 
    de 
    varias 
    incidencias
  sentences:
  - Who has the burden to provide a sufficient record on appeal?
  - >-
    ¿Para qué departamento prestaba servicios Artificial Intelligence, Corp.
    según el contrato?
  - What section numbers are referenced for further information?
- source_sentence: >-
    submission by protégé firms.  SHS MJAR at 28–30; VCH MJAR at 28–30 (same). 
    This, Plaintiffs 

    contend, violates Section 125.8(e) because it purportedly subjects protégés
    to heightened 

    evaluation criteria as compared to offerors generally and makes it harder
    for mentor-protégé JVs 

    to compete against more experienced firms with larger portfolios of past
    work.  SHS MJAR at 28
  sentences:
  - >-
    On what date were the plaintiff's petition, complaint, and trial court's
    order filed?
  - What section do Plaintiffs contend is violated?
  - What is the amount of pages the party seeks to withhold?
- source_sentence: >-
    Beginning with the CIA’s submissions, the CIA states in its declaration
    submitted in No. 

    11-445 that “[s]ome of the records for which information has been withheld
    pursuant to 

    Exemption (b)(5) contain confidential communications between CIA staff and
    attorneys within 

    the CIA’s Office of General Counsel about the processing of certain FOIA
    requests.”  Third Lutz
  sentences:
  - >-
    What is the subject of the confidential communications mentioned in the
    document?
  - >-
    Which rule number is associated with the responsibilities regarding
    nonlawyer assistants?
  - ¿Qué número de referencia tiene el documento?
- source_sentence: >-
    contracting/contracting-assistance-programs/sba-mentor-protege-program (last
    visited Apr. 19, 

    2023). 

    5 
     
    protégé must demonstrate that the added mentor-protégé relationship will not
    adversely affect the 

    development of either protégé firm (e.g., the second firm may not be a
    competitor of the first 

    firm).”  13 C.F.R. § 125.9(b)(3).
  sentences:
  - >-
    What discretion do district courts have regarding a defendant’s invocation
    of FOIA exemptions?
  - What must the protégé demonstrate about the mentor-protégé relationship?
  - Which exemptions are mentioned in relation to the plaintiff's accusations?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5285935085007728
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5718701700154559
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6646058732612056
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7310664605873262
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5285935085007728
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5141679546625451
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.3941267387944359
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.2329211746522411
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.17877382792375063
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4894384337970118
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6120556414219475
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7184441009788768
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6300476733345887
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5741100561811532
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6186392686743281
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5162287480680062
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5486862442040186
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6414219474497682
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7171561051004637
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5162287480680062
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.4981968057702215
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.38083462132921175
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.22720247295208656
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.17400824317362185
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.47346728490468826
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5910613086038125
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.702344152498712
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6137901932050573
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5592913569343243
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6021884440021203
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.482225656877898
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5285935085007728
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.598145285935085
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.678516228748068
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.482225656877898
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.46986089644513135
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.35857805255023184
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.21468315301391033
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16267387944358577
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4492529623905203
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5569294178258629
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6642194744976816
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5781404945062661
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5249122936139936
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5698418441661705
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.41576506955177744
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4435857805255023
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5363214837712519
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6105100463678517
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.41576506955177744
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3992787223080887
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.31282843894899537
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.19242658423493045
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.14258114374034003
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3835651725914477
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.48776403915507466
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5963420917053066
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5108672198469205
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4573213365717227
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5029873598412773
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.312210200927357
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.3508500772797527
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.43585780525502316
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.47913446676970634
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.312210200927357
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3091190108191654
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.250386398763524
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14976816074188565
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10497166409067489
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2954662545079856
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3930963420917053
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.46805770221535287
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.39563928784117025
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3508985304580356
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3939277813526489
      name: Cosine Map@100
datasets:
- AdamLucek/legal-rag-positives-synthetic
---

# ModernBERT Embed base Legal Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the [AdamLucek/legal-rag-positives-synthetic](https://huggingface.co/datasets/AdamLucek/legal-rag-positives-synthetic) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision 92168cbee600b1abbfc10842aba988aa69572291 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [AdamLucek/legal-rag-positives-synthetic](https://huggingface.co/datasets/AdamLucek/legal-rag-positives-synthetic)
- **Language:** en
- **License:** apache-2.0

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/ModernBERT-embed-base-legal-MRL")
# Run inference
sentences = [
    'contracting/contracting-assistance-programs/sba-mentor-protege-program (last visited Apr. 19, \n2023). \n5 \n \nprotégé must demonstrate that the added mentor-protégé relationship will not adversely affect the \ndevelopment of either protégé firm (e.g., the second firm may not be a competitor of the first \nfirm).”  13 C.F.R. § 125.9(b)(3).',
    'What must the protégé demonstrate about the mentor-protégé relationship?',
    'What discretion do district courts have regarding a defendant’s invocation of FOIA exemptions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768  | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:---------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.5286   | 0.5162     | 0.4822     | 0.4158     | 0.3122     |
| cosine_accuracy@3   | 0.5719   | 0.5487     | 0.5286     | 0.4436     | 0.3509     |
| cosine_accuracy@5   | 0.6646   | 0.6414     | 0.5981     | 0.5363     | 0.4359     |
| cosine_accuracy@10  | 0.7311   | 0.7172     | 0.6785     | 0.6105     | 0.4791     |
| cosine_precision@1  | 0.5286   | 0.5162     | 0.4822     | 0.4158     | 0.3122     |
| cosine_precision@3  | 0.5142   | 0.4982     | 0.4699     | 0.3993     | 0.3091     |
| cosine_precision@5  | 0.3941   | 0.3808     | 0.3586     | 0.3128     | 0.2504     |
| cosine_precision@10 | 0.2329   | 0.2272     | 0.2147     | 0.1924     | 0.1498     |
| cosine_recall@1     | 0.1788   | 0.174      | 0.1627     | 0.1426     | 0.105      |
| cosine_recall@3     | 0.4894   | 0.4735     | 0.4493     | 0.3836     | 0.2955     |
| cosine_recall@5     | 0.6121   | 0.5911     | 0.5569     | 0.4878     | 0.3931     |
| cosine_recall@10    | 0.7184   | 0.7023     | 0.6642     | 0.5963     | 0.4681     |
| **cosine_ndcg@10**  | **0.63** | **0.6138** | **0.5781** | **0.5109** | **0.3956** |
| cosine_mrr@10       | 0.5741   | 0.5593     | 0.5249     | 0.4573     | 0.3509     |
| cosine_map@100      | 0.6186   | 0.6022     | 0.5698     | 0.503      | 0.3939     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

#### [AdamLucek/legal-rag-positives-synthetic](https://huggingface.co/datasets/AdamLucek/legal-rag-positives-synthetic)

* Dataset: [AdamLucek/legal-rag-positives-synthetic](https://huggingface.co/datasets/AdamLucek/legal-rag-positives-synthetic)
* Size: 5,822 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 15 tokens</li><li>mean: 97.6 tokens</li><li>max: 153 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 16.68 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                       | anchor                                                                                  |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
  | <code>infrastructure security information,” the information at issue must, “if disclosed . . . reveal vulner-<br>abilities in Department of Defense critical infrastructure.”  10 U.S.C. § 130e(f).  The closest the <br>Department comes is asserting that the information “individually or in the aggregate, would enable</code>                                                                                             | <code>What type of information must reveal vulnerabilities if disclosed?</code>         |
  | <code>they have bid.”  Oral Arg. Tr. at 42:18–20.  Plaintiffs also assert that, should this Court require the <br>Polaris Solicitations to consider price at the IDIQ level, such an adjustment “adds a solicitation <br>requirement that would necessarily change the overall structure of the evaluation” GSA must <br>perform in awarding the IDIQ contracts.  Oral Arg. Tr. at 43:3–5; see supra Discussion Section</code> | <code>Where in the document can further discussion about the assertion be found?</code> |
  | <code>otra parte. Fernández v. San Juan Cement Co., Inc., 118 DPR 713, <br>718-719 (1987).   Nuestro más Alto Foro ha dispuesto que, la <br>facultad de imponer honorarios de abogados es la mejor arma que <br> <br>22 Id. <br>23 Andamios de PR v. Newport Bonding, 179 DPR 503, 520 (2010); Pérez Rodríguez <br>v. López Rodríguez, supra; SLG González -Figueroa v. Pacheco Romero, supra;</code>                          | <code>What case is cited with the reference number 118 DPR 713?</code>                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8791     | 10     | 5.6528        | -                      | -                      | -                      | -                      | -                     |
| 1.0        | 12     | -             | 0.5926                 | 0.5753                 | 0.5457                 | 0.4687                 | 0.3455                |
| 1.7033     | 20     | 2.4543        | -                      | -                      | -                      | -                      | -                     |
| 2.0        | 24     | -             | 0.6195                 | 0.6066                 | 0.5778                 | 0.4998                 | 0.3828                |
| 2.5275     | 30     | 1.7455        | -                      | -                      | -                      | -                      | -                     |
| 3.0        | 36     | -             | 0.6292                 | 0.6135                 | 0.5765                 | 0.5057                 | 0.3928                |
| 3.3516     | 40     | 1.5499        | -                      | -                      | -                      | -                      | -                     |
| **3.7033** | **44** | **-**         | **0.63**               | **0.6138**             | **0.5781**             | **0.5109**             | **0.3956**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```