Upload plant disease classifier model
Browse files- README.md +22 -0
- config.json +25 -0
- inference.py +87 -0
- model.pth +3 -0
README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Plant Disease Classification Model
|
2 |
+
|
3 |
+
A PyTorch model for classifying plant diseases in Apple, Tomato, and Corn crops.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
- **Model Type**: Image Classification
|
8 |
+
- **Architecture**: EfficientNet-B2 with Attention
|
9 |
+
- **Input Size**: 224x224 RGB images
|
10 |
+
- **Output**: Disease classification
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
|
14 |
+
```python
|
15 |
+
from inference import load_model, predict_image
|
16 |
+
|
17 |
+
# Load model
|
18 |
+
model, class_names = load_model("model.pth")
|
19 |
+
|
20 |
+
# Make prediction
|
21 |
+
results = predict_image("your_image.jpg", model, class_names)
|
22 |
+
print(results)
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "image-classification",
|
3 |
+
"num_classes": 14,
|
4 |
+
"class_names": [
|
5 |
+
"Apple_Apple_Scab",
|
6 |
+
"Apple_Black_Rot",
|
7 |
+
"Apple_Cedar_Apple_Rust",
|
8 |
+
"Apple_Healthy",
|
9 |
+
"Corn_(maize)_Cercospora_Leaf_Spot",
|
10 |
+
"Corn_(maize)_Common_Rust_",
|
11 |
+
"Corn_(maize)_Healthy",
|
12 |
+
"Corn_(maize)_Northern_Leaf_Blight",
|
13 |
+
"Tomato_Bacterial_Spot",
|
14 |
+
"Tomato_Early_Blight",
|
15 |
+
"Tomato_Healthy",
|
16 |
+
"Tomato_Late_Blight",
|
17 |
+
"Tomato_Septoria_Leaf_Spot",
|
18 |
+
"Tomato_Yellow_Leaf_Curl_Virus"
|
19 |
+
],
|
20 |
+
"input_size": [
|
21 |
+
224,
|
22 |
+
224
|
23 |
+
],
|
24 |
+
"framework": "pytorch"
|
25 |
+
}
|
inference.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
class PlantDiseaseClassifier(nn.Module):
|
9 |
+
def __init__(self, num_classes, dropout_rate=0.3):
|
10 |
+
super(PlantDiseaseClassifier, self).__init__()
|
11 |
+
|
12 |
+
# Use EfficientNet as backbone
|
13 |
+
from torchvision import models
|
14 |
+
self.backbone = models.efficientnet_b2(pretrained=False)
|
15 |
+
|
16 |
+
# Get feature dimension
|
17 |
+
num_features = self.backbone.classifier[1].in_features
|
18 |
+
|
19 |
+
# Replace classifier with custom head
|
20 |
+
self.backbone.classifier = nn.Identity()
|
21 |
+
|
22 |
+
# Attention mechanism
|
23 |
+
self.attention = nn.Sequential(
|
24 |
+
nn.AdaptiveAvgPool2d(1),
|
25 |
+
nn.Flatten(),
|
26 |
+
nn.Linear(num_features, num_features // 4),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Linear(num_features // 4, num_features),
|
29 |
+
nn.Sigmoid()
|
30 |
+
)
|
31 |
+
|
32 |
+
# Custom classifier head
|
33 |
+
self.classifier = nn.Sequential(
|
34 |
+
nn.Dropout(dropout_rate),
|
35 |
+
nn.Linear(num_features, 512),
|
36 |
+
nn.BatchNorm1d(512),
|
37 |
+
nn.ReLU(),
|
38 |
+
nn.Dropout(dropout_rate * 0.5),
|
39 |
+
nn.Linear(512, 256),
|
40 |
+
nn.BatchNorm1d(256),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Dropout(dropout_rate * 0.3),
|
43 |
+
nn.Linear(256, num_classes)
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
features = self.backbone.features(x)
|
48 |
+
pooled = F.adaptive_avg_pool2d(features, 1)
|
49 |
+
pooled = torch.flatten(pooled, 1)
|
50 |
+
attention_weights = self.attention(features)
|
51 |
+
attended_features = pooled * attention_weights
|
52 |
+
output = self.classifier(attended_features)
|
53 |
+
return output
|
54 |
+
|
55 |
+
def load_model(model_path):
|
56 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
57 |
+
num_classes = len(checkpoint['class_names'])
|
58 |
+
model = PlantDiseaseClassifier(num_classes=num_classes)
|
59 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
60 |
+
model.eval()
|
61 |
+
return model, checkpoint['class_names']
|
62 |
+
|
63 |
+
def predict_image(image_path, model, class_names):
|
64 |
+
transform = transforms.Compose([
|
65 |
+
transforms.Resize((224, 224)),
|
66 |
+
transforms.ToTensor(),
|
67 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
68 |
+
])
|
69 |
+
|
70 |
+
image = Image.open(image_path).convert('RGB')
|
71 |
+
image_tensor = transform(image).unsqueeze(0)
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
outputs = model(image_tensor)
|
75 |
+
probabilities = F.softmax(outputs, dim=1)[0]
|
76 |
+
|
77 |
+
# Get top predictions
|
78 |
+
top_probs, top_indices = torch.topk(probabilities, 3)
|
79 |
+
|
80 |
+
results = []
|
81 |
+
for i in range(len(top_indices)):
|
82 |
+
results.append({
|
83 |
+
"label": class_names[top_indices[i].item()],
|
84 |
+
"score": top_probs[i].item()
|
85 |
+
})
|
86 |
+
|
87 |
+
return results
|
model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a1511cc75d57f3e05f1d7ef48842e52e34edddf4eeb3537795068e3e1f2ebf8
|
3 |
+
size 38649138
|