Abuzaid01 commited on
Commit
68627f7
·
verified ·
1 Parent(s): 21a2903

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -10
README.md CHANGED
@@ -1,28 +1,69 @@
1
  ---
2
  language: en
 
3
  tags:
4
  - pytorch
5
  - plant-disease
6
  - image-classification
 
 
7
  datasets:
8
- - plant-village-dataset
9
  ---
10
 
11
  # Plant Disease Classification Model
12
 
13
- This model classifies plant diseases from the PlantVillage dataset. It was trained on:
14
- - Apple
15
- - Tomato
16
- - Corn (Maize)
17
 
18
  ## Model Details
19
- - Architecture: EfficientNet-B2 with custom head
20
- - Training Accuracy: {your_train_accuracy}%
21
- - Validation Accuracy: {your_val_accuracy}%
22
- - Test Accuracy: {your_test_accuracy}%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## How to Use
 
 
25
  ```python
26
  from transformers import AutoModelForImageClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- model = AutoModelForImageClassification.from_pretrained("{Abuzaid01}/plant-disease-classifier")
 
1
  ---
2
  language: en
3
+ license: mit
4
  tags:
5
  - pytorch
6
  - plant-disease
7
  - image-classification
8
+ - agriculture
9
+ - computer-vision
10
  datasets:
11
+ - plant-village
12
  ---
13
 
14
  # Plant Disease Classification Model
15
 
16
+ 🌱 EfficientNet-B2 based model for classifying plant diseases in apples, tomatoes, and corn (maize).
 
 
 
17
 
18
  ## Model Details
19
+
20
+ ### Architecture
21
+ - **Backbone**: EfficientNet-B2 (pretrained)
22
+ - **Custom Head**:
23
+ - Attention mechanism
24
+ - 3 dense layers (512, 256, num_classes)
25
+ - Dropout regularization (0.3)
26
+
27
+ ### Training Data
28
+ - **Dataset**: PlantVillage Dataset
29
+ - **Classes**: 14 total (4 Apple, 6 Tomato, 4 Corn diseases + healthy)
30
+ - **Train/Val/Test Split**: 80%/10%/10%
31
+ - **Image Size**: 224x224
32
+
33
+ ### Performance Metrics
34
+ | Metric | Value |
35
+ |--------------|---------|
36
+ | Train Accuracy | 98.66% |
37
+ | Val Accuracy | 99.24% |
38
+ | Test Accuracy | 98.91% |
39
 
40
  ## How to Use
41
+
42
+ ### Inference
43
  ```python
44
  from transformers import AutoModelForImageClassification
45
+ from PIL import Image
46
+ import torch
47
+ import torchvision.transforms as transforms
48
+
49
+ # Load model
50
+ model = AutoModelForImageClassification.from_pretrained("Abuzaid01/plant-disease-classifier")
51
+
52
+ # Preprocess image
53
+ transform = transforms.Compose([
54
+ transforms.Resize(256),
55
+ transforms.CenterCrop(224),
56
+ transforms.ToTensor(),
57
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
58
+ ])
59
+
60
+ # Load and transform image
61
+ image = Image.open("plant.jpg")
62
+ inputs = transform(image).unsqueeze(0)
63
+
64
+ # Predict
65
+ with torch.no_grad():
66
+ outputs = model(inputs)
67
+ prediction = torch.argmax(outputs.logits, dim=1).item()
68
 
69
+ print(f"Predicted class: {model.config.id2label[prediction]}")