Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- llama
|
6 |
+
- text-generation
|
7 |
+
- fine-tuned
|
8 |
+
datasets:
|
9 |
+
- mlabonne/guanaco-llama2-1k
|
10 |
+
---
|
11 |
+
|
12 |
+
# Abhishek0323's Fine-tuned LLaMA-2 Model
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
This model is a fine-tuned version of the LLaMA-2 language model specifically optimized for generating responses to general knowledge questions. It has been fine-tuned to better understand and process prompts in a conversational context.
|
17 |
+
|
18 |
+
## How to Use
|
19 |
+
|
20 |
+
#python
|
21 |
+
from transformers import AutoTokenizer, pipeline
|
22 |
+
import torch
|
23 |
+
|
24 |
+
model_name = "Abhishek0323/llama-2-7b-ftabhi"
|
25 |
+
prompt = "What is a large language model?"
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
+
gen_pipeline = pipeline(
|
29 |
+
"text-generation",
|
30 |
+
model=model_name,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
device_map="auto",
|
33 |
+
)
|
34 |
+
|
35 |
+
sequences = gen_pipeline(
|
36 |
+
f'<s>[INST] {prompt} [/INST]',
|
37 |
+
do_sample=True,
|
38 |
+
top_k=10,
|
39 |
+
num_return_sequences=1,
|
40 |
+
eos_token_id=tokenizer.eos_token_id,
|
41 |
+
max_length=200,
|
42 |
+
)
|
43 |
+
|
44 |
+
for ans in sequences:
|
45 |
+
print(f"Result: {ans['generated_text']}")
|