AbdullahAlnemr1 commited on
Commit
269bf04
·
verified ·
1 Parent(s): 8a8b5a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - cnn_dailymail
5
+ tags:
6
+ - summarization
7
+ - t5
8
+ - flan-t5
9
+ - transformers
10
+ - huggingface
11
+ - fine-tuned
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: FLAN-T5 Base Fine-Tuned on CNN/DailyMail
15
+ results:
16
+ - task:
17
+ type: summarization
18
+ name: Summarization
19
+ dataset:
20
+ name: CNN/DailyMail
21
+ type: cnn_dailymail
22
+ metrics:
23
+ - type: rouge
24
+ value: 25.33
25
+ name: Rouge-1
26
+ - type: rouge
27
+ value: 11.96
28
+ name: Rouge-2
29
+ - type: rouge
30
+ value: 20.68
31
+ name: Rouge-L
32
+ metrics:
33
+ - rouge
34
+ base_model:
35
+ - google/flan-t5-base
36
+ pipeline_tag: summarization
37
+ ---
38
+
39
+ # FLAN-T5 Base Fine-Tuned on CNN/DailyMail
40
+
41
+ This model is a fine-tuned version of [`google/flan-t5-base`](https://huggingface.co/google/flan-t5-base) on the [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) dataset using the Hugging Face Transformers library.
42
+
43
+ ## 📝 Task
44
+
45
+ **Abstractive Summarization**: Given a news article, generate a concise summary.
46
+
47
+ ---
48
+
49
+ ## 📊 Evaluation Results
50
+
51
+ The model was fine-tuned on 20,000 training samples and validated/tested on 2,000 samples. Evaluation was performed using ROUGE metrics:
52
+
53
+ | Metric | Score |
54
+ |-------------|--------|
55
+ | ROUGE-1 | 25.33 |
56
+ | ROUGE-2 | 11.96 |
57
+ | ROUGE-L | 20.68 |
58
+ | ROUGE-Lsum | 23.81 |
59
+
60
+ ---
61
+
62
+ ## 📦 Usage
63
+
64
+ ```python
65
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
66
+
67
+ model = T5ForConditionalGeneration.from_pretrained("AbdullahAlnemr1/flan-t5-summarizer")
68
+ tokenizer = T5Tokenizer.from_pretrained("AbdullahAlnemr1/flan-t5-summarizer")
69
+
70
+ input_text = "summarize: The US president met with the Senate to discuss..."
71
+ inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
72
+
73
+ summary_ids = model.generate(inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True)
74
+ print(tokenizer.decode(summary_ids[0], skip_special_tokens=True))