from typing import List, Union import numpy as np # import onnxruntime import axengine import torch from PIL import Image from transformers import CLIPTokenizer, CLIPTextModel, PreTrainedTokenizer, CLIPTextModelWithProjection import time import argparse import uuid # 用于生成唯一文件名 import os def get_args(): parser = argparse.ArgumentParser( prog="StableDiffusion", description="Generate picture with the input prompt" ) parser.add_argument("--prompt", type=str, required=False, default="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", help="the input text prompt") parser.add_argument("--text_model_dir", type=str, required=False, default="./models/", help="Path to text encoder and tokenizer files") parser.add_argument("--unet_model", type=str, required=False, default="./models/unet.axmodel", help="Path to unet axmodel model") parser.add_argument("--vae_decoder_model", type=str, required=False, default="./models/vae_decoder.axmodel", help="Path to vae decoder axmodel model") parser.add_argument("--time_input", type=str, required=False, default="./models/time_input_txt2img.npy", help="Path to time input file") parser.add_argument("--save_dir", type=str, required=False, default="./txt2img_output_axe", help="Path to the output image file") return parser.parse_args() def maybe_convert_prompt(prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821 if not isinstance(prompt, List): prompts = [prompt] else: prompts = prompt prompts = [_maybe_convert_prompt(p, tokenizer) for p in prompts] if not isinstance(prompt, List): return prompts[0] return prompts def _maybe_convert_prompt(prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821 tokens = tokenizer.tokenize(prompt) unique_tokens = set(tokens) for token in unique_tokens: if token in tokenizer.added_tokens_encoder: replacement = token i = 1 while f"{token}_{i}" in tokenizer.added_tokens_encoder: replacement += f" {token}_{i}" i += 1 prompt = prompt.replace(token, replacement) return prompt def get_embeds(prompt = "Portrait of a pretty girl", tokenizer_dir = "./models/tokenizer", text_encoder_dir = "./models/text_encoder"): tokenizer = CLIPTokenizer.from_pretrained(tokenizer_dir) text_inputs = tokenizer( prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_encoder = axengine.InferenceSession( os.path.join( text_encoder_dir, "sd15_text_encoder_sim.axmodel" ), ) text_encoder_onnx_out = text_encoder.run(None, {"input_ids": text_input_ids.to("cpu").numpy().astype(np.int32)})[0] prompt_embeds_npy = text_encoder_onnx_out return prompt_embeds_npy def get_alphas_cumprod(): betas = torch.linspace(0.00085 ** 0.5, 0.012 ** 0.5, 1000, dtype=torch.float32) ** 2 alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0).detach().numpy() final_alphas_cumprod = alphas_cumprod[0] self_timesteps = np.arange(0, 1000)[::-1].copy().astype(np.int64) return alphas_cumprod, final_alphas_cumprod, self_timesteps if __name__ == '__main__': args = get_args() tokenizer_dir = args.text_model_dir + 'tokenizer' text_encoder_dir = args.text_model_dir + 'text_encoder' unet_model = args.unet_model vae_decoder_model = args.vae_decoder_model time_input = args.time_input save_dir = args.save_dir # 确保保存目录存在 os.makedirs(save_dir, exist_ok=True) print(f"tokenizer: {tokenizer_dir}") print(f"text_encoder: {text_encoder_dir}") print(f"unet_model: {unet_model}") print(f"vae_decoder_model: {vae_decoder_model}") print(f"time_input: {time_input}") print(f"save_dir: {save_dir}") # 加载模型(只加载一次) start = time.time() unet_session_main = axengine.InferenceSession(unet_model) vae_decoder = axengine.InferenceSession(vae_decoder_model) print(f"load models take {(1000 * (time.time() - start)):.1f}ms") # 主循环:支持多次输入 Prompt while True: # 用户输入 Prompt prompt = input("\nEnter a prompt to generate an image (or type 'exit' to quit): ") if prompt.lower() == 'exit': print("Exiting...") break # Text Encoder start = time.time() prompt_embeds_npy = get_embeds(prompt, tokenizer_dir, text_encoder_dir) print(f"text encoder take {(1000 * (time.time() - start)):.1f}ms") # 初始化 Latent latents_shape = [1, 4, 64, 64] latent = torch.randn(latents_shape, generator=None, device="cpu", dtype=torch.float32, layout=torch.strided).detach().numpy() alphas_cumprod, final_alphas_cumprod, self_timesteps = get_alphas_cumprod() # 加载 time_input 文件 time_input_data = np.load(time_input) # U-Net Inference Loop timesteps = np.array([999, 759, 499, 259]).astype(np.int64) unet_loop_start = time.time() for i, timestep in enumerate(timesteps): unet_start = time.time() noise_pred = unet_session_main.run(None, { "sample": latent, "/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input_data[i], axis=0), "encoder_hidden_states": prompt_embeds_npy })[0] print(f"unet once take {(1000 * (time.time() - unet_start)):.1f}ms") sample = latent model_output = noise_pred if i < 3: prev_timestep = timesteps[i + 1] else: prev_timestep = timestep alpha_prod_t = alphas_cumprod[timestep] alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alphas_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev scaled_timestep = timestep * 10 c_skip = 0.5 ** 2 / (scaled_timestep ** 2 + 0.5 ** 2) c_out = scaled_timestep / (scaled_timestep ** 2 + 0.5 ** 2) ** 0.5 predicted_original_sample = (sample - (beta_prod_t ** 0.5) * model_output) / (alpha_prod_t ** 0.5) denoised = c_out * predicted_original_sample + c_skip * sample if i != 3: noise = torch.randn(model_output.shape, generator=None, device="cpu", dtype=torch.float32, layout=torch.strided).to("cpu").detach().numpy() prev_sample = (alpha_prod_t_prev ** 0.5) * denoised + (beta_prod_t_prev ** 0.5) * noise else: prev_sample = denoised latent = prev_sample print(f"unet loop take {(1000 * (time.time() - unet_loop_start)):.1f}ms") # VAE Inference vae_start = time.time() latent = latent / 0.18215 image = vae_decoder.run(None, {"x": latent})[0] print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms") # 保存结果 save_start = time.time() image = np.transpose(image, (0, 2, 3, 1)).squeeze(axis=0) image_denorm = np.clip(image / 2 + 0.5, 0, 1) image = (image_denorm * 255).round().astype("uint8") pil_image = Image.fromarray(image[:, :, :3]) # 使用 UUID 确保文件名唯一 unique_filename = f"{uuid.uuid4()}.png" save_path = os.path.join(save_dir, unique_filename) pil_image.save(save_path) print(f"Image saved to {save_path}") print(f"Save image take {(1000 * (time.time() - save_start)):.1f}ms")