yongqiang commited on
Commit
5a3d81c
·
1 Parent(s): 6fb90cb
embeds/SmolVLMVisionEmbeddings.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cab5d95b958d2cd6173c887bd98cab7accda22e8d321f7c348464e428b59f675
3
+ size 2758065
infer_axmodel.py CHANGED
@@ -12,10 +12,10 @@ from ml_dtypes import bfloat16
12
 
13
 
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
- embeddings = torch.load("SmolVLMVisionEmbeddings.pkl", map_location=device, weights_only=False)
16
- embeds = np.load(os.path.join("./SmolVLM2-500M-Video-Instruct_1024_AXMODEL", "model.embed_tokens.weight.npy"))
17
  # connector = torch.load("SmolVLMConnector.pkl", map_location=device, weights_only=False)
18
- encoder = ort.InferenceSession(f'./export_onnx_model/vision_model.onnx', providers=["CPUExecutionProvider"])
19
 
20
 
21
  def run_vision_model(
@@ -164,8 +164,8 @@ def post_process(data, topk=1, topp=0.9, temperature=0.6):
164
 
165
  if __name__ == "__main__":
166
 
167
- hf_model_path = "./SmolVLM2-500M-Video-Instruct/"
168
- axmodel_path = "./SmolVLM2-500M-Video-Instruct_1024_AXMODEL"
169
  prompt = 'Can you describe this image?'
170
 
171
  processor = AutoProcessor.from_pretrained(hf_model_path)
@@ -176,7 +176,7 @@ if __name__ == "__main__":
176
  {
177
  "role": "user",
178
  "content": [
179
- {"type": "image", "url": "./bee.jpg"},
180
  {"type": "text", "text": prompt},
181
  ]
182
  },
 
12
 
13
 
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ embeddings = torch.load("./embeds/SmolVLMVisionEmbeddings.pkl", map_location=device, weights_only=False)
16
+ embeds = np.load(os.path.join("./smolvlm2_axmodel", "model.embed_tokens.weight.npy"))
17
  # connector = torch.load("SmolVLMConnector.pkl", map_location=device, weights_only=False)
18
+ encoder = ort.InferenceSession(f'./vit_mdoel/vision_model.onnx', providers=["CPUExecutionProvider"])
19
 
20
 
21
  def run_vision_model(
 
164
 
165
  if __name__ == "__main__":
166
 
167
+ hf_model_path = "./smolvlm2_tokenizer/"
168
+ axmodel_path = "./smolvlm2_axmodel"
169
  prompt = 'Can you describe this image?'
170
 
171
  processor = AutoProcessor.from_pretrained(hf_model_path)
 
176
  {
177
  "role": "user",
178
  "content": [
179
+ {"type": "image", "url": "./assets/bee.jpg"},
180
  {"type": "text", "text": prompt},
181
  ]
182
  },