AXCXEPT commited on
Commit
451db48
1 Parent(s): 6579602

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -170
README.md CHANGED
@@ -1,199 +1,108 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - ja
5
+ - en
6
+ pipeline_tag: text-generation
7
+ base_model: Qwen/Qwen2.5-32B-Instruct
8
+ tags:
9
+ - chat
10
  ---
11
 
12
  # Model Card for Model ID
13
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/_9uZ9yI6dI7V3FqDED_C3.png)
14
 
15
+ ## Introduction
16
+ This model is based on Qwen/Qwen2.5-32B-Instruct with multiple tunings to improve overall performance from the Base model.
17
+ It excels at Japanese language tasks, but is designed to meet a variety of global needs.
18
+ #### In the Japanese MT Bench using gpt-4o as the evaluator, the inference performance of this model with 4-bit quantization achieved a score approaching that of gpt-4-turbo.
19
 
20
+ Qwen/Qwen2.5-32B-Instructをベースに複数のチューニングを施し、Baseモデルから総合的なパフォーマンスを向上させたモデルです。
21
+ 日本語タスクを得意としますが、グローバルな多様なニーズに対応できるように設計されています。
22
+ gpt-4oを評価器としたJapanese MT Benchにおいて、4ビット量子化を用いた本モデルの推論能力はgpt-4-turboをに近づくスコアを達成いたしました。
23
 
24
+ ## [Benchmark Results]
25
 
26
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/xzmMXfzF1JRFXrgNAEDQM.png)
27
 
28
+ ## [Usage]
29
 
30
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
31
 
32
+ ```bash
33
+ pip install bitsandbytes transformers accelerate
34
+ ```
35
 
36
+ ```python
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+ import torch
 
 
 
 
39
 
40
+ model_name = "AXCXEPT/EZO-Qwen2.5-32B-Instruct"
41
 
42
+ model = AutoModelForCausalLM.from_pretrained(
43
+ model_name,
44
+ torch_dtype=torch.bfloat16,
45
+ device_map="auto",
46
+ load_in_4bit=True
47
+ )
48
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
49
 
50
+ prompt = "仕事の熱意を取り戻すためのアイデアを5つ挙げてください。"
51
+ messages = [
52
+ {"role": "system", "content": "You are a helpful assistant."},
53
+ {"role": "user", "content": prompt}
54
+ ]
55
+ text = tokenizer.apply_chat_template(
56
+ messages,
57
+ tokenize=False,
58
+ add_generation_prompt=True
59
+ )
60
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
61
 
62
+ generated_ids = model.generate(
63
+ **model_inputs,
64
+ max_new_tokens=512
65
+ )
66
+ generated_ids = [
67
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
68
+ ]
69
 
70
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
71
+ print(response)
72
+ ```
73
 
 
74
 
75
+ #### Training Dataset]
76
+ We extracted high-quality data from Japanese Wikipedia and FineWeb to create instruction data. Our innovative training approach allows for performance improvements across various languages and domains, making the model suitable for global use despite its focus on Japanese data.
77
 
78
+ 日本語のWikiデータおよび、FineWebから良質なデータのみを抽出し、Instructionデータを作成しました。このモデルでは日本語に特化させていますが、世界中のどんなユースケースでも利用可能なアプローチです。
79
 
80
+ https://huggingface.co/datasets/legacy-datasets/wikipedia
81
+ https://huggingface.co/datasets/HuggingFaceFW/fineweb
82
 
83
+ #### Data Preprocessing
84
+ We used a plain instruction tuning method to train the model on exemplary responses. This approach enhances the model's ability to understand and generate high-quality responses across various languages and contexts.
85
 
86
+ プレインストラクトチューニング手法を用いて、模範的回答を学習させました。この手法��より、モデルは様々な言語やコンテキストにおいて高品質な応答を理解し生成する能力が向上しています。
87
 
88
+ #### Implementation Information
89
+ [Pre-Instruction Training]
90
 
91
+ https://huggingface.co/instruction-pretrain/instruction-synthesizer
92
 
93
+ ### [Disclaimer]
94
+ このモデルは研究開発のみを目的として提供されるものであり、実験的なプロトタイプとみなされるべきモデルです。
95
+ 商業的な使用やミッションクリティカルな環境への配備を意図したものではありません。
96
+ 本モデルの使用は、使用者の責任において行われるものとし、その性能および結果は保証されません。
97
+ Axcxept株式会社は、直接的、間接的、特別、偶発的、結果的な損害、または本モデルの使用から生じるいかなる損失に対しても、得られた結果にかかわらず、一切の責任を負いません。
98
+ 利用者は、本モデルの使用に伴うリスクを十分に理解し、自己の判断で使用するものとします。
99
 
100
+ ### [Hardware]
101
+ A100 × 4(Running in 32h)
102
 
103
+ ### [謝辞]
104
+ 本ベースモデルを開発してくださったGoogle社ならびに当該チームの開発者の方々、また自動評価の手法を提供してくださった多数の方々に感謝と尊敬の意を表します。
105
 
106
+ ### Company:
107
+ Axcxept co., ltd.
108
+ [![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)