Adding evaluation results
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- evaluations/ar/AceGPT-v2-32B-Chat/acva_5_shot.json +125 -0
- evaluations/ar/AceGPT-v2-32B-Chat/ar_ifeval_0_shot.json +142 -0
- evaluations/ar/AceGPT-v2-32B-Chat/araMath_v3_5_shot.json +126 -0
- evaluations/ar/AceGPT-v2-32B-Chat/araPro_0_shot.json +130 -0
- evaluations/ar/AceGPT-v2-32B-Chat/arabicmmlu_0_shot.json +0 -0
- evaluations/ar/AceGPT-v2-32B-Chat/etec_v2_0_shot.json +126 -0
- evaluations/ar/AceGPT-v2-32B-Chat/exams_ar_5_shot.json +127 -0
- evaluations/ar/AceGPT-v2-32B-Chat/gat_0_shot.json +543 -0
- evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_mcq_0_shot.json +127 -0
- evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_tf_0_shot.json +129 -0
- evaluations/ar/AceGPT-v2-32B-Chat/openaimmlu_0_shot.json +0 -0
- evaluations/ar/AceGPT-v2-8B-Chat/acva_5_shot.json +123 -0
- evaluations/ar/AceGPT-v2-8B-Chat/ar_ifeval_0_shot.json +142 -0
- evaluations/ar/AceGPT-v2-8B-Chat/araMath_v3_5_shot.json +126 -0
- evaluations/ar/AceGPT-v2-8B-Chat/araPro_0_shot.json +130 -0
- evaluations/ar/AceGPT-v2-8B-Chat/arabicmmlu_0_shot.json +0 -0
- evaluations/ar/AceGPT-v2-8B-Chat/etec_v2_0_shot.json +126 -0
- evaluations/ar/AceGPT-v2-8B-Chat/exams_ar_5_shot.json +119 -0
- evaluations/ar/AceGPT-v2-8B-Chat/gat_0_shot.json +539 -0
- evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_mcq_0_shot.json +127 -0
- evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_tf_0_shot.json +129 -0
- evaluations/ar/AceGPT-v2-8B-Chat/openaimmlu_0_shot.json +0 -0
- evaluations/ar/Allam-7b-instruct-preview/acva_5_shot.json +119 -0
- evaluations/ar/Allam-7b-instruct-preview/ar_ifeval_0_shot.json +142 -0
- evaluations/ar/Allam-7b-instruct-preview/araMath_v3_5_shot.json +126 -0
- evaluations/ar/Allam-7b-instruct-preview/araPro_0_shot.json +130 -0
- evaluations/ar/Allam-7b-instruct-preview/arabicmmlu_0_shot.json +0 -0
- evaluations/ar/Allam-7b-instruct-preview/etec_v2_0_shot.json +126 -0
- evaluations/ar/Allam-7b-instruct-preview/exams_ar_5_shot.json +121 -0
- evaluations/ar/Allam-7b-instruct-preview/gat_0_shot.json +549 -0
- evaluations/ar/Allam-7b-instruct-preview/moe_ien_mcq_0_shot.json +127 -0
- evaluations/ar/Allam-7b-instruct-preview/moe_ien_tf_0_shot.json +129 -0
- evaluations/ar/Allam-7b-instruct-preview/openaimmlu_0_shot.json +0 -0
- evaluations/ar/Falcon3-7B-Instruct/acva_5_shot.json +123 -0
- evaluations/ar/Falcon3-7B-Instruct/ar_ifeval_0_shot.json +142 -0
- evaluations/ar/Falcon3-7B-Instruct/araMath_v3_5_shot.json +126 -0
- evaluations/ar/Falcon3-7B-Instruct/araPro_0_shot.json +130 -0
- evaluations/ar/Falcon3-7B-Instruct/arabicmmlu_0_shot.json +0 -0
- evaluations/ar/Falcon3-7B-Instruct/etec_v2_0_shot.json +126 -0
- evaluations/ar/Falcon3-7B-Instruct/exams_ar_5_shot.json +125 -0
- evaluations/ar/Falcon3-7B-Instruct/gat_0_shot.json +553 -0
- evaluations/ar/Falcon3-7B-Instruct/moe_ien_mcq_0_shot.json +127 -0
- evaluations/ar/Falcon3-7B-Instruct/moe_ien_tf_0_shot.json +129 -0
- evaluations/ar/Falcon3-7B-Instruct/openaimmlu_0_shot.json +0 -0
- evaluations/ar/Llama-3.3-70B-Instruct/acva_5_shot.json +125 -0
- evaluations/ar/Llama-3.3-70B-Instruct/ar_ifeval_0_shot.json +142 -0
- evaluations/ar/Llama-3.3-70B-Instruct/araMath_v3_5_shot.json +126 -0
- evaluations/ar/Llama-3.3-70B-Instruct/araPro_0_shot.json +130 -0
- evaluations/ar/Llama-3.3-70B-Instruct/arabicmmlu_0_shot.json +0 -0
- evaluations/ar/Llama-3.3-70B-Instruct/etec_v2_0_shot.json +126 -0
evaluations/ar/AceGPT-v2-32B-Chat/acva_5_shot.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"acva": {
|
4 |
+
"alias": "acva",
|
5 |
+
"acc,none": 0.7274397244546499,
|
6 |
+
"acc_stderr,none": 0.004771397968508457,
|
7 |
+
"acc_norm,none": 0.7157290470723306,
|
8 |
+
"acc_norm_stderr,none": 0.004833440968499389
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"acva": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"acva": {
|
16 |
+
"task": "acva",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"validation_split": "validation",
|
25 |
+
"test_split": "test",
|
26 |
+
"fewshot_split": "validation",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": false,
|
50 |
+
"metadata": {
|
51 |
+
"version": 1.0
|
52 |
+
}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"versions": {
|
56 |
+
"acva": 1.0
|
57 |
+
},
|
58 |
+
"n-shot": {
|
59 |
+
"acva": 5
|
60 |
+
},
|
61 |
+
"higher_is_better": {
|
62 |
+
"acva": {
|
63 |
+
"acc": true,
|
64 |
+
"acc_norm": true
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"n-samples": {
|
68 |
+
"acva": {
|
69 |
+
"original": 8710,
|
70 |
+
"effective": 8710
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"config": {
|
74 |
+
"model": "hf",
|
75 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
76 |
+
"model_num_parameters": 32512545792,
|
77 |
+
"model_dtype": "torch.float16",
|
78 |
+
"model_revision": "main",
|
79 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
80 |
+
"batch_size": "auto",
|
81 |
+
"batch_sizes": [
|
82 |
+
64
|
83 |
+
],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "788a3672",
|
95 |
+
"date": 1737779797.3395095,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.1",
|
98 |
+
"upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091",
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<|endoftext|>",
|
101 |
+
"151643"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"<|endoftext|>",
|
105 |
+
"151643"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
null,
|
109 |
+
"None"
|
110 |
+
],
|
111 |
+
"eot_token_id": 151643,
|
112 |
+
"max_length": 32768,
|
113 |
+
"task_hashes": {},
|
114 |
+
"model_source": "hf",
|
115 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
116 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
117 |
+
"system_instruction": null,
|
118 |
+
"system_instruction_sha": null,
|
119 |
+
"fewshot_as_multiturn": false,
|
120 |
+
"chat_template": null,
|
121 |
+
"chat_template_sha": null,
|
122 |
+
"start_time": 26647.534977248,
|
123 |
+
"end_time": 27360.084961217,
|
124 |
+
"total_evaluation_time_seconds": "712.5499839689983"
|
125 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/ar_ifeval_0_shot.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ar_ifeval": {
|
4 |
+
"alias": "ar_ifeval",
|
5 |
+
"prompt_level_strict_acc,none": 0.2574626865671642,
|
6 |
+
"prompt_level_strict_acc_stderr,none": 0.018903377119672635,
|
7 |
+
"inst_level_strict_acc,none": 0.6341296928327645,
|
8 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
9 |
+
"prompt_level_loose_acc,none": 0.31529850746268656,
|
10 |
+
"prompt_level_loose_acc_stderr,none": 0.020087907677710036,
|
11 |
+
"inst_level_loose_acc,none": 0.6764505119453925,
|
12 |
+
"inst_level_loose_acc_stderr,none": "N/A"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"group_subtasks": {
|
16 |
+
"ar_ifeval": []
|
17 |
+
},
|
18 |
+
"configs": {
|
19 |
+
"ar_ifeval": {
|
20 |
+
"task": "ar_ifeval",
|
21 |
+
"dataset_path": "lm_eval/tasks/ar_ifeval/ar_ifeval.py",
|
22 |
+
"dataset_name": "ar_ifeval",
|
23 |
+
"dataset_kwargs": {
|
24 |
+
"trust_remote_code": true
|
25 |
+
},
|
26 |
+
"test_split": "test",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": 0,
|
29 |
+
"process_results": "def process_results(doc, results):\n\n response = results[0]\n out_strict = process_sample(doc, response, 'strict')\n out_loose = process_sample(doc, response, 'loose')\n\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "prompt_level_strict_acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "inst_level_strict_acc",
|
42 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "prompt_level_loose_acc",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"metric": "inst_level_loose_acc",
|
52 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
53 |
+
"higher_is_better": true
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"output_type": "generate_until",
|
57 |
+
"generation_kwargs": {
|
58 |
+
"until": [],
|
59 |
+
"do_sample": false,
|
60 |
+
"temperature": 0.0,
|
61 |
+
"max_gen_toks": 1280
|
62 |
+
},
|
63 |
+
"repeats": 1,
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 4.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"ar_ifeval": 4.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"ar_ifeval": 0
|
75 |
+
},
|
76 |
+
"higher_is_better": {
|
77 |
+
"ar_ifeval": {
|
78 |
+
"prompt_level_strict_acc": true,
|
79 |
+
"inst_level_strict_acc": true,
|
80 |
+
"prompt_level_loose_acc": true,
|
81 |
+
"inst_level_loose_acc": true
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"n-samples": {
|
85 |
+
"ar_ifeval": {
|
86 |
+
"original": 536,
|
87 |
+
"effective": 536
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"config": {
|
91 |
+
"model": "hf",
|
92 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
93 |
+
"model_num_parameters": 32512545792,
|
94 |
+
"model_dtype": "torch.float16",
|
95 |
+
"model_revision": "main",
|
96 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
97 |
+
"batch_size": 1,
|
98 |
+
"batch_sizes": [],
|
99 |
+
"device": null,
|
100 |
+
"use_cache": null,
|
101 |
+
"limit": null,
|
102 |
+
"bootstrap_iters": 100000,
|
103 |
+
"gen_kwargs": null,
|
104 |
+
"random_seed": 0,
|
105 |
+
"numpy_seed": 1234,
|
106 |
+
"torch_seed": 1234,
|
107 |
+
"fewshot_seed": 1234
|
108 |
+
},
|
109 |
+
"git_hash": "788a3672",
|
110 |
+
"date": 1738794647.2071357,
|
111 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
112 |
+
"transformers_version": "4.48.2",
|
113 |
+
"upper_git_hash": null,
|
114 |
+
"tokenizer_pad_token": [
|
115 |
+
"<|endoftext|>",
|
116 |
+
"151643"
|
117 |
+
],
|
118 |
+
"tokenizer_eos_token": [
|
119 |
+
"<|endoftext|>",
|
120 |
+
"151643"
|
121 |
+
],
|
122 |
+
"tokenizer_bos_token": [
|
123 |
+
null,
|
124 |
+
"None"
|
125 |
+
],
|
126 |
+
"eot_token_id": 151643,
|
127 |
+
"max_length": 32768,
|
128 |
+
"task_hashes": {
|
129 |
+
"ar_ifeval": "d0b91e989c8b697090db63bf498d8e2d8dd80815a595e5f22845a8425bff22fa"
|
130 |
+
},
|
131 |
+
"model_source": "hf",
|
132 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
133 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
134 |
+
"system_instruction": null,
|
135 |
+
"system_instruction_sha": null,
|
136 |
+
"fewshot_as_multiturn": false,
|
137 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
138 |
+
"chat_template_sha": "af9c0233881b083b52ff773580215222b5440ac3d0beeeca99b76329b048f8db",
|
139 |
+
"start_time": 1753623.131321269,
|
140 |
+
"end_time": 1761093.682009075,
|
141 |
+
"total_evaluation_time_seconds": "7470.550687805982"
|
142 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/araMath_v3_5_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araMath_v3": {
|
4 |
+
"alias": "araMath_v3",
|
5 |
+
"acc,none": 0.6446280991735537,
|
6 |
+
"acc_stderr,none": 0.019475010007284948,
|
7 |
+
"acc_norm,none": 0.6446280991735537,
|
8 |
+
"acc_norm_stderr,none": 0.019475010007284948
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araMath_v3": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araMath_v3": {
|
16 |
+
"task": "araMath_v3",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araMath_v3/araMath_v3.py",
|
21 |
+
"dataset_name": "araMath_v3",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "{{choices}}",
|
31 |
+
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"araMath_v3": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"araMath_v3": 5
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"araMath_v3": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"araMath_v3": {
|
70 |
+
"original": 605,
|
71 |
+
"effective": 605
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
77 |
+
"model_num_parameters": 32512545792,
|
78 |
+
"model_dtype": "torch.float16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "788a3672",
|
94 |
+
"date": 1738805225.8162587,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.2",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|endoftext|>",
|
100 |
+
"151643"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|endoftext|>",
|
104 |
+
"151643"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
null,
|
108 |
+
"None"
|
109 |
+
],
|
110 |
+
"eot_token_id": 151643,
|
111 |
+
"max_length": 32768,
|
112 |
+
"task_hashes": {
|
113 |
+
"araMath_v3": "17b2596f46d709ea107ed20bef044ca126de23a8e9bbc8ba0a9beef94fbc032d"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
117 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
122 |
+
"chat_template_sha": "af9c0233881b083b52ff773580215222b5440ac3d0beeeca99b76329b048f8db",
|
123 |
+
"start_time": 1764201.606664753,
|
124 |
+
"end_time": 1764270.091855178,
|
125 |
+
"total_evaluation_time_seconds": "68.48519042483531"
|
126 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/araPro_0_shot.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araPro": {
|
4 |
+
"alias": "araPro",
|
5 |
+
"acc,none": 0.671865626874625,
|
6 |
+
"acc_stderr,none": 0.006640213946839424,
|
7 |
+
"acc_norm,none": 0.671865626874625,
|
8 |
+
"acc_norm_stderr,none": 0.006640213946839424
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araPro": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araPro": {
|
16 |
+
"task": "araPro",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araPro/araPro.py",
|
21 |
+
"dataset_name": "araPro",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "{{choices}}",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": true,
|
54 |
+
"doc_to_decontamination_query": "Question",
|
55 |
+
"metadata": {
|
56 |
+
"version": 2.0
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"versions": {
|
61 |
+
"araPro": 2.0
|
62 |
+
},
|
63 |
+
"n-shot": {
|
64 |
+
"araPro": 0
|
65 |
+
},
|
66 |
+
"higher_is_better": {
|
67 |
+
"araPro": {
|
68 |
+
"acc": true,
|
69 |
+
"acc_norm": true
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"n-samples": {
|
73 |
+
"araPro": {
|
74 |
+
"original": 5001,
|
75 |
+
"effective": 5001
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"config": {
|
79 |
+
"model": "hf",
|
80 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
81 |
+
"model_num_parameters": 32512545792,
|
82 |
+
"model_dtype": "torch.float16",
|
83 |
+
"model_revision": "main",
|
84 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
85 |
+
"batch_size": 1,
|
86 |
+
"batch_sizes": [],
|
87 |
+
"device": null,
|
88 |
+
"use_cache": null,
|
89 |
+
"limit": null,
|
90 |
+
"bootstrap_iters": 100000,
|
91 |
+
"gen_kwargs": null,
|
92 |
+
"random_seed": 0,
|
93 |
+
"numpy_seed": 1234,
|
94 |
+
"torch_seed": 1234,
|
95 |
+
"fewshot_seed": 1234
|
96 |
+
},
|
97 |
+
"git_hash": "788a3672",
|
98 |
+
"date": 1738802810.5474553,
|
99 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
100 |
+
"transformers_version": "4.48.2",
|
101 |
+
"upper_git_hash": null,
|
102 |
+
"tokenizer_pad_token": [
|
103 |
+
"<|endoftext|>",
|
104 |
+
"151643"
|
105 |
+
],
|
106 |
+
"tokenizer_eos_token": [
|
107 |
+
"<|endoftext|>",
|
108 |
+
"151643"
|
109 |
+
],
|
110 |
+
"tokenizer_bos_token": [
|
111 |
+
null,
|
112 |
+
"None"
|
113 |
+
],
|
114 |
+
"eot_token_id": 151643,
|
115 |
+
"max_length": 32768,
|
116 |
+
"task_hashes": {
|
117 |
+
"araPro": "2f706897ad0129e016cc8d6907f8bb4359c32403fc2d1b0a4e78717f424793da"
|
118 |
+
},
|
119 |
+
"model_source": "hf",
|
120 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
121 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
122 |
+
"system_instruction": null,
|
123 |
+
"system_instruction_sha": null,
|
124 |
+
"fewshot_as_multiturn": false,
|
125 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
126 |
+
"chat_template_sha": "af9c0233881b083b52ff773580215222b5440ac3d0beeeca99b76329b048f8db",
|
127 |
+
"start_time": 1761786.552693387,
|
128 |
+
"end_time": 1761894.218775138,
|
129 |
+
"total_evaluation_time_seconds": "107.66608175099827"
|
130 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/arabicmmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/AceGPT-v2-32B-Chat/etec_v2_0_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"etec_v2": {
|
4 |
+
"alias": "etec_v2",
|
5 |
+
"acc,none": 0.6481187069422364,
|
6 |
+
"acc_stderr,none": 0.010996501146375258,
|
7 |
+
"acc_norm,none": 0.6481187069422364,
|
8 |
+
"acc_norm_stderr,none": 0.010996501146375258
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"etec_v2": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"etec_v2": {
|
16 |
+
"task": "etec_v2",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/etec_v2/etec.py",
|
21 |
+
"dataset_name": "etec_v2",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n print(doc[\"label\"])\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": int(doc[\"label\"])-1,\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 0,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"etec_v2": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"etec_v2": 0
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"etec_v2": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"etec_v2": {
|
70 |
+
"original": 1887,
|
71 |
+
"effective": 1887
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
77 |
+
"model_num_parameters": 32512545792,
|
78 |
+
"model_dtype": "torch.float16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "788a3672",
|
94 |
+
"date": 1738805984.3189015,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.2",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|endoftext|>",
|
100 |
+
"151643"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|endoftext|>",
|
104 |
+
"151643"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
null,
|
108 |
+
"None"
|
109 |
+
],
|
110 |
+
"eot_token_id": 151643,
|
111 |
+
"max_length": 32768,
|
112 |
+
"task_hashes": {
|
113 |
+
"etec_v2": "697b8bfc7d6b0f85165e5cca6953182b09b7a2b0d79fa31e74cc3897f432de41"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
117 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
122 |
+
"chat_template_sha": "af9c0233881b083b52ff773580215222b5440ac3d0beeeca99b76329b048f8db",
|
123 |
+
"start_time": 1764960.166542801,
|
124 |
+
"end_time": 1765035.801506021,
|
125 |
+
"total_evaluation_time_seconds": "75.63496321998537"
|
126 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/exams_ar_5_shot.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"exams_ar": {
|
4 |
+
"alias": "exams_ar",
|
5 |
+
"acc,none": 0.553072625698324,
|
6 |
+
"acc_stderr,none": 0.021474702941383872,
|
7 |
+
"acc_norm,none": 0.553072625698324,
|
8 |
+
"acc_norm_stderr,none": 0.021474702941383872
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"exams_ar": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"exams_ar": {
|
16 |
+
"task": "exams_ar",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/exams_ar",
|
21 |
+
"dataset_name": "exams_ar",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n\n def _process_docs(doc):\n def format_example(doc, keys):\n \"\"\"\n <prompt>\n \u0633\u0624\u0627\u0644:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n \u0627\u062c\u0627\u0628\u0629:\n \"\"\"\n \n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n def _format_subject(subject):\n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n\n keys = [\"A\", \"B\", \"C\", \"D\"]\n \n subject = doc['id'].split(\"-\")[0]\n description = f\"\ufed2\ufef4\ufee3\ufe8d \ufef2\ufee0\ufef3 \ufe84\ufeb4\ufe8c\ufedf\ufe93 \ufe8d\ufefc\ufea8\ufe98\ufef3\ufe8d\ufead \ufee2\ufee7 \ufee2\ufe98\ufecb\ufea9\ufea9 (\ufee2\ufecb \ufe8d\ufefa\ufe9f\ufe8e\ufe91\ufe8e\ufe97) \ufea1\ufeee\ufedf {_format_subject(subject)} \\n\" #\ufee2\ufee7 \ufed2\ufec0\ufee0\ufedb \ufe8e\ufea8\ufe97\ufead \ufe88\ufe9f\ufe8e\ufe91\ufe93 \ufeed\ufe8e\ufea3\ufea9\ufe93 \ufee2\ufee7 \ufe90\ufef4\ufee7 'A\u060c B\u060c C\u060c D' \ufea9\ufeee\ufee7 \ufeb5\ufeae\ufea3\\n\"\n\n out_doc = {\n \"idx\": doc[\"idx\"],\n \"id\": doc[\"id\"],\n 'dsecription': description,\n \"query\": format_example(doc, keys), # \"Question: \" + doc[\"question\"]['stem'] + \"\\nAnswer:\",\n \"choices\": keys,\n \"gold\": [\"A\", \"B\", \"C\", \"D\"].index(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "choices",
|
32 |
+
"description": "description",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"num_fewshot": 5,
|
36 |
+
"metric_list": [
|
37 |
+
{
|
38 |
+
"metric": "acc",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"metric": "acc_norm",
|
44 |
+
"aggregation": "mean",
|
45 |
+
"higher_is_better": true
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"output_type": "multiple_choice",
|
49 |
+
"repeats": 1,
|
50 |
+
"should_decontaminate": true,
|
51 |
+
"doc_to_decontamination_query": "query",
|
52 |
+
"metadata": {
|
53 |
+
"version": 1.0
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"versions": {
|
58 |
+
"exams_ar": 1.0
|
59 |
+
},
|
60 |
+
"n-shot": {
|
61 |
+
"exams_ar": 5
|
62 |
+
},
|
63 |
+
"higher_is_better": {
|
64 |
+
"exams_ar": {
|
65 |
+
"acc": true,
|
66 |
+
"acc_norm": true
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"n-samples": {
|
70 |
+
"exams_ar": {
|
71 |
+
"original": 537,
|
72 |
+
"effective": 537
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"config": {
|
76 |
+
"model": "hf",
|
77 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
78 |
+
"model_num_parameters": 32512545792,
|
79 |
+
"model_dtype": "torch.float16",
|
80 |
+
"model_revision": "main",
|
81 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
82 |
+
"batch_size": "auto",
|
83 |
+
"batch_sizes": [
|
84 |
+
16
|
85 |
+
],
|
86 |
+
"device": null,
|
87 |
+
"use_cache": null,
|
88 |
+
"limit": null,
|
89 |
+
"bootstrap_iters": 100000,
|
90 |
+
"gen_kwargs": null,
|
91 |
+
"random_seed": 0,
|
92 |
+
"numpy_seed": 1234,
|
93 |
+
"torch_seed": 1234,
|
94 |
+
"fewshot_seed": 1234
|
95 |
+
},
|
96 |
+
"git_hash": "788a3672",
|
97 |
+
"date": 1737780545.20475,
|
98 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
99 |
+
"transformers_version": "4.48.1",
|
100 |
+
"upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091",
|
101 |
+
"tokenizer_pad_token": [
|
102 |
+
"<|endoftext|>",
|
103 |
+
"151643"
|
104 |
+
],
|
105 |
+
"tokenizer_eos_token": [
|
106 |
+
"<|endoftext|>",
|
107 |
+
"151643"
|
108 |
+
],
|
109 |
+
"tokenizer_bos_token": [
|
110 |
+
null,
|
111 |
+
"None"
|
112 |
+
],
|
113 |
+
"eot_token_id": 151643,
|
114 |
+
"max_length": 32768,
|
115 |
+
"task_hashes": {},
|
116 |
+
"model_source": "hf",
|
117 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
118 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
119 |
+
"system_instruction": null,
|
120 |
+
"system_instruction_sha": null,
|
121 |
+
"fewshot_as_multiturn": false,
|
122 |
+
"chat_template": null,
|
123 |
+
"chat_template_sha": null,
|
124 |
+
"start_time": 27395.295045238,
|
125 |
+
"end_time": 27506.949709817,
|
126 |
+
"total_evaluation_time_seconds": "111.65466457900038"
|
127 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/gat_0_shot.json
ADDED
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gat": {
|
4 |
+
"acc,none": 0.4321459927254484,
|
5 |
+
"acc_stderr,none": 0.0038347299693873033,
|
6 |
+
"alias": "gat"
|
7 |
+
},
|
8 |
+
"gat_algebra": {
|
9 |
+
"alias": " - gat_algebra",
|
10 |
+
"acc,none": 0.3992578849721707,
|
11 |
+
"acc_stderr,none": 0.009435653731651068
|
12 |
+
},
|
13 |
+
"gat_analogy": {
|
14 |
+
"alias": " - gat_analogy",
|
15 |
+
"acc,none": 0.2867030965391621,
|
16 |
+
"acc_stderr,none": 0.00863295163043938
|
17 |
+
},
|
18 |
+
"gat_arithmetic": {
|
19 |
+
"alias": " - gat_arithmetic",
|
20 |
+
"acc,none": 0.3894000736105999,
|
21 |
+
"acc_stderr,none": 0.009356458715331561
|
22 |
+
},
|
23 |
+
"gat_association": {
|
24 |
+
"alias": " - gat_association",
|
25 |
+
"acc,none": 0.4143540669856459,
|
26 |
+
"acc_stderr,none": 0.01524590184737997
|
27 |
+
},
|
28 |
+
"gat_comparisons": {
|
29 |
+
"alias": " - gat_comparisons",
|
30 |
+
"acc,none": 0.34672131147540985,
|
31 |
+
"acc_stderr,none": 0.013631312083187472
|
32 |
+
},
|
33 |
+
"gat_completion": {
|
34 |
+
"alias": " - gat_completion",
|
35 |
+
"acc,none": 0.5793388429752067,
|
36 |
+
"acc_stderr,none": 0.014197745251253151
|
37 |
+
},
|
38 |
+
"gat_contextual": {
|
39 |
+
"alias": " - gat_contextual",
|
40 |
+
"acc,none": 0.522239263803681,
|
41 |
+
"acc_stderr,none": 0.013837823280527494
|
42 |
+
},
|
43 |
+
"gat_geometry": {
|
44 |
+
"alias": " - gat_geometry",
|
45 |
+
"acc,none": 0.5013698630136987,
|
46 |
+
"acc_stderr,none": 0.026207022561245137
|
47 |
+
},
|
48 |
+
"gat_reading": {
|
49 |
+
"alias": " - gat_reading",
|
50 |
+
"acc,none": 0.585633270321361,
|
51 |
+
"acc_stderr,none": 0.009580200187530542
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"groups": {
|
55 |
+
"gat": {
|
56 |
+
"acc,none": 0.4321459927254484,
|
57 |
+
"acc_stderr,none": 0.0038347299693873033,
|
58 |
+
"alias": "gat"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"group_subtasks": {
|
62 |
+
"gat": [
|
63 |
+
"gat_analogy",
|
64 |
+
"gat_association",
|
65 |
+
"gat_completion",
|
66 |
+
"gat_reading",
|
67 |
+
"gat_algebra",
|
68 |
+
"gat_arithmetic",
|
69 |
+
"gat_comparisons",
|
70 |
+
"gat_contextual",
|
71 |
+
"gat_geometry"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"configs": {
|
75 |
+
"gat_algebra": {
|
76 |
+
"task": "gat_algebra",
|
77 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
78 |
+
"dataset_name": "algebra",
|
79 |
+
"dataset_kwargs": {
|
80 |
+
"trust_remote_code": true
|
81 |
+
},
|
82 |
+
"test_split": "test",
|
83 |
+
"fewshot_split": "validation",
|
84 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
85 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
86 |
+
"doc_to_target": "{{label}}",
|
87 |
+
"doc_to_choice": [
|
88 |
+
"\u0623",
|
89 |
+
"\u0628",
|
90 |
+
"\u062c",
|
91 |
+
"\u062f"
|
92 |
+
],
|
93 |
+
"description": "",
|
94 |
+
"target_delimiter": " ",
|
95 |
+
"fewshot_delimiter": "\n\n",
|
96 |
+
"num_fewshot": 0,
|
97 |
+
"metric_list": [
|
98 |
+
{
|
99 |
+
"metric": "acc",
|
100 |
+
"aggregation": "mean",
|
101 |
+
"higher_is_better": true
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"output_type": "multiple_choice",
|
105 |
+
"repeats": 1,
|
106 |
+
"should_decontaminate": false,
|
107 |
+
"metadata": {
|
108 |
+
"version": 0.0
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"gat_analogy": {
|
112 |
+
"task": "gat_analogy",
|
113 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
114 |
+
"dataset_name": "analogy",
|
115 |
+
"dataset_kwargs": {
|
116 |
+
"trust_remote_code": true
|
117 |
+
},
|
118 |
+
"test_split": "test",
|
119 |
+
"fewshot_split": "validation",
|
120 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
121 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
122 |
+
"doc_to_target": "{{label}}",
|
123 |
+
"doc_to_choice": [
|
124 |
+
"\u0623",
|
125 |
+
"\u0628",
|
126 |
+
"\u062c",
|
127 |
+
"\u062f"
|
128 |
+
],
|
129 |
+
"description": "",
|
130 |
+
"target_delimiter": " ",
|
131 |
+
"fewshot_delimiter": "\n\n",
|
132 |
+
"num_fewshot": 0,
|
133 |
+
"metric_list": [
|
134 |
+
{
|
135 |
+
"metric": "acc",
|
136 |
+
"aggregation": "mean",
|
137 |
+
"higher_is_better": true
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"output_type": "multiple_choice",
|
141 |
+
"repeats": 1,
|
142 |
+
"should_decontaminate": false,
|
143 |
+
"metadata": {
|
144 |
+
"version": 0.0
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"gat_arithmetic": {
|
148 |
+
"task": "gat_arithmetic",
|
149 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
150 |
+
"dataset_name": "arithmetic",
|
151 |
+
"dataset_kwargs": {
|
152 |
+
"trust_remote_code": true
|
153 |
+
},
|
154 |
+
"test_split": "test",
|
155 |
+
"fewshot_split": "validation",
|
156 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
157 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
158 |
+
"doc_to_target": "{{label}}",
|
159 |
+
"doc_to_choice": [
|
160 |
+
"\u0623",
|
161 |
+
"\u0628",
|
162 |
+
"\u062c",
|
163 |
+
"\u062f"
|
164 |
+
],
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"num_fewshot": 0,
|
169 |
+
"metric_list": [
|
170 |
+
{
|
171 |
+
"metric": "acc",
|
172 |
+
"aggregation": "mean",
|
173 |
+
"higher_is_better": true
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"output_type": "multiple_choice",
|
177 |
+
"repeats": 1,
|
178 |
+
"should_decontaminate": false,
|
179 |
+
"metadata": {
|
180 |
+
"version": 0.0
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"gat_association": {
|
184 |
+
"task": "gat_association",
|
185 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
186 |
+
"dataset_name": "association",
|
187 |
+
"dataset_kwargs": {
|
188 |
+
"trust_remote_code": true
|
189 |
+
},
|
190 |
+
"test_split": "test",
|
191 |
+
"fewshot_split": "validation",
|
192 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
193 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
194 |
+
"doc_to_target": "{{label}}",
|
195 |
+
"doc_to_choice": [
|
196 |
+
"\u0623",
|
197 |
+
"\u0628",
|
198 |
+
"\u062c",
|
199 |
+
"\u062f"
|
200 |
+
],
|
201 |
+
"description": "",
|
202 |
+
"target_delimiter": " ",
|
203 |
+
"fewshot_delimiter": "\n\n",
|
204 |
+
"num_fewshot": 0,
|
205 |
+
"metric_list": [
|
206 |
+
{
|
207 |
+
"metric": "acc",
|
208 |
+
"aggregation": "mean",
|
209 |
+
"higher_is_better": true
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"output_type": "multiple_choice",
|
213 |
+
"repeats": 1,
|
214 |
+
"should_decontaminate": false,
|
215 |
+
"metadata": {
|
216 |
+
"version": 0.0
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"gat_comparisons": {
|
220 |
+
"task": "gat_comparisons",
|
221 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
222 |
+
"dataset_name": "comparisons",
|
223 |
+
"dataset_kwargs": {
|
224 |
+
"trust_remote_code": true
|
225 |
+
},
|
226 |
+
"test_split": "test",
|
227 |
+
"fewshot_split": "validation",
|
228 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
229 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
230 |
+
"doc_to_target": "{{label}}",
|
231 |
+
"doc_to_choice": [
|
232 |
+
"\u0623",
|
233 |
+
"\u0628",
|
234 |
+
"\u062c",
|
235 |
+
"\u062f"
|
236 |
+
],
|
237 |
+
"description": "",
|
238 |
+
"target_delimiter": " ",
|
239 |
+
"fewshot_delimiter": "\n\n",
|
240 |
+
"num_fewshot": 0,
|
241 |
+
"metric_list": [
|
242 |
+
{
|
243 |
+
"metric": "acc",
|
244 |
+
"aggregation": "mean",
|
245 |
+
"higher_is_better": true
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"output_type": "multiple_choice",
|
249 |
+
"repeats": 1,
|
250 |
+
"should_decontaminate": false,
|
251 |
+
"metadata": {
|
252 |
+
"version": 0.0
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"gat_completion": {
|
256 |
+
"task": "gat_completion",
|
257 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
258 |
+
"dataset_name": "completion",
|
259 |
+
"dataset_kwargs": {
|
260 |
+
"trust_remote_code": true
|
261 |
+
},
|
262 |
+
"test_split": "test",
|
263 |
+
"fewshot_split": "validation",
|
264 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
265 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
266 |
+
"doc_to_target": "{{label}}",
|
267 |
+
"doc_to_choice": [
|
268 |
+
"\u0623",
|
269 |
+
"\u0628",
|
270 |
+
"\u062c",
|
271 |
+
"\u062f"
|
272 |
+
],
|
273 |
+
"description": "",
|
274 |
+
"target_delimiter": " ",
|
275 |
+
"fewshot_delimiter": "\n\n",
|
276 |
+
"num_fewshot": 0,
|
277 |
+
"metric_list": [
|
278 |
+
{
|
279 |
+
"metric": "acc",
|
280 |
+
"aggregation": "mean",
|
281 |
+
"higher_is_better": true
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"output_type": "multiple_choice",
|
285 |
+
"repeats": 1,
|
286 |
+
"should_decontaminate": false,
|
287 |
+
"metadata": {
|
288 |
+
"version": 0.0
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"gat_contextual": {
|
292 |
+
"task": "gat_contextual",
|
293 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
294 |
+
"dataset_name": "contextual",
|
295 |
+
"dataset_kwargs": {
|
296 |
+
"trust_remote_code": true
|
297 |
+
},
|
298 |
+
"test_split": "test",
|
299 |
+
"fewshot_split": "validation",
|
300 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
301 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
302 |
+
"doc_to_target": "{{label}}",
|
303 |
+
"doc_to_choice": [
|
304 |
+
"\u0623",
|
305 |
+
"\u0628",
|
306 |
+
"\u062c",
|
307 |
+
"\u062f"
|
308 |
+
],
|
309 |
+
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
|
310 |
+
"target_delimiter": " ",
|
311 |
+
"fewshot_delimiter": "\n\n",
|
312 |
+
"num_fewshot": 0,
|
313 |
+
"metric_list": [
|
314 |
+
{
|
315 |
+
"metric": "acc",
|
316 |
+
"aggregation": "mean",
|
317 |
+
"higher_is_better": true
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"output_type": "multiple_choice",
|
321 |
+
"repeats": 1,
|
322 |
+
"should_decontaminate": false,
|
323 |
+
"metadata": {
|
324 |
+
"version": 0.0
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"gat_geometry": {
|
328 |
+
"task": "gat_geometry",
|
329 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
330 |
+
"dataset_name": "geometry",
|
331 |
+
"dataset_kwargs": {
|
332 |
+
"trust_remote_code": true
|
333 |
+
},
|
334 |
+
"test_split": "test",
|
335 |
+
"fewshot_split": "validation",
|
336 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
337 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
338 |
+
"doc_to_target": "{{label}}",
|
339 |
+
"doc_to_choice": [
|
340 |
+
"\u0623",
|
341 |
+
"\u0628",
|
342 |
+
"\u062c",
|
343 |
+
"\u062f"
|
344 |
+
],
|
345 |
+
"description": "",
|
346 |
+
"target_delimiter": " ",
|
347 |
+
"fewshot_delimiter": "\n\n",
|
348 |
+
"num_fewshot": 0,
|
349 |
+
"metric_list": [
|
350 |
+
{
|
351 |
+
"metric": "acc",
|
352 |
+
"aggregation": "mean",
|
353 |
+
"higher_is_better": true
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"output_type": "multiple_choice",
|
357 |
+
"repeats": 1,
|
358 |
+
"should_decontaminate": false,
|
359 |
+
"metadata": {
|
360 |
+
"version": 0.0
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"gat_reading": {
|
364 |
+
"task": "gat_reading",
|
365 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
366 |
+
"dataset_name": "reading",
|
367 |
+
"dataset_kwargs": {
|
368 |
+
"trust_remote_code": true
|
369 |
+
},
|
370 |
+
"test_split": "test",
|
371 |
+
"fewshot_split": "validation",
|
372 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
373 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
374 |
+
"doc_to_target": "{{label}}",
|
375 |
+
"doc_to_choice": [
|
376 |
+
"\u0623",
|
377 |
+
"\u0628",
|
378 |
+
"\u062c",
|
379 |
+
"\u062f"
|
380 |
+
],
|
381 |
+
"description": "",
|
382 |
+
"target_delimiter": " ",
|
383 |
+
"fewshot_delimiter": "\n\n",
|
384 |
+
"num_fewshot": 0,
|
385 |
+
"metric_list": [
|
386 |
+
{
|
387 |
+
"metric": "acc",
|
388 |
+
"aggregation": "mean",
|
389 |
+
"higher_is_better": true
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"output_type": "multiple_choice",
|
393 |
+
"repeats": 1,
|
394 |
+
"should_decontaminate": false,
|
395 |
+
"metadata": {
|
396 |
+
"version": 0.0
|
397 |
+
}
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"versions": {
|
401 |
+
"gat": 0,
|
402 |
+
"gat_algebra": 0.0,
|
403 |
+
"gat_analogy": 0.0,
|
404 |
+
"gat_arithmetic": 0.0,
|
405 |
+
"gat_association": 0.0,
|
406 |
+
"gat_comparisons": 0.0,
|
407 |
+
"gat_completion": 0.0,
|
408 |
+
"gat_contextual": 0.0,
|
409 |
+
"gat_geometry": 0.0,
|
410 |
+
"gat_reading": 0.0
|
411 |
+
},
|
412 |
+
"n-shot": {
|
413 |
+
"gat_algebra": 0,
|
414 |
+
"gat_analogy": 0,
|
415 |
+
"gat_arithmetic": 0,
|
416 |
+
"gat_association": 0,
|
417 |
+
"gat_comparisons": 0,
|
418 |
+
"gat_completion": 0,
|
419 |
+
"gat_contextual": 0,
|
420 |
+
"gat_geometry": 0,
|
421 |
+
"gat_reading": 0
|
422 |
+
},
|
423 |
+
"higher_is_better": {
|
424 |
+
"gat": {
|
425 |
+
"acc": true
|
426 |
+
},
|
427 |
+
"gat_algebra": {
|
428 |
+
"acc": true
|
429 |
+
},
|
430 |
+
"gat_analogy": {
|
431 |
+
"acc": true
|
432 |
+
},
|
433 |
+
"gat_arithmetic": {
|
434 |
+
"acc": true
|
435 |
+
},
|
436 |
+
"gat_association": {
|
437 |
+
"acc": true
|
438 |
+
},
|
439 |
+
"gat_comparisons": {
|
440 |
+
"acc": true
|
441 |
+
},
|
442 |
+
"gat_completion": {
|
443 |
+
"acc": true
|
444 |
+
},
|
445 |
+
"gat_contextual": {
|
446 |
+
"acc": true
|
447 |
+
},
|
448 |
+
"gat_geometry": {
|
449 |
+
"acc": true
|
450 |
+
},
|
451 |
+
"gat_reading": {
|
452 |
+
"acc": true
|
453 |
+
}
|
454 |
+
},
|
455 |
+
"n-samples": {
|
456 |
+
"gat_analogy": {
|
457 |
+
"original": 2745,
|
458 |
+
"effective": 2745
|
459 |
+
},
|
460 |
+
"gat_association": {
|
461 |
+
"original": 1045,
|
462 |
+
"effective": 1045
|
463 |
+
},
|
464 |
+
"gat_completion": {
|
465 |
+
"original": 1210,
|
466 |
+
"effective": 1210
|
467 |
+
},
|
468 |
+
"gat_reading": {
|
469 |
+
"original": 2645,
|
470 |
+
"effective": 2645
|
471 |
+
},
|
472 |
+
"gat_algebra": {
|
473 |
+
"original": 2695,
|
474 |
+
"effective": 2695
|
475 |
+
},
|
476 |
+
"gat_arithmetic": {
|
477 |
+
"original": 2717,
|
478 |
+
"effective": 2717
|
479 |
+
},
|
480 |
+
"gat_comparisons": {
|
481 |
+
"original": 1220,
|
482 |
+
"effective": 1220
|
483 |
+
},
|
484 |
+
"gat_contextual": {
|
485 |
+
"original": 1304,
|
486 |
+
"effective": 1304
|
487 |
+
},
|
488 |
+
"gat_geometry": {
|
489 |
+
"original": 365,
|
490 |
+
"effective": 365
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"config": {
|
494 |
+
"model": "hf",
|
495 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
496 |
+
"model_num_parameters": 32512545792,
|
497 |
+
"model_dtype": "torch.float16",
|
498 |
+
"model_revision": "main",
|
499 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
500 |
+
"batch_size": 1,
|
501 |
+
"batch_sizes": [],
|
502 |
+
"device": null,
|
503 |
+
"use_cache": null,
|
504 |
+
"limit": null,
|
505 |
+
"bootstrap_iters": 100000,
|
506 |
+
"gen_kwargs": null,
|
507 |
+
"random_seed": 0,
|
508 |
+
"numpy_seed": 1234,
|
509 |
+
"torch_seed": 1234,
|
510 |
+
"fewshot_seed": 1234
|
511 |
+
},
|
512 |
+
"git_hash": "ef4b2026",
|
513 |
+
"date": 1733932681.9722512,
|
514 |
+
"pretty_env_info": "PyTorch version: 2.1.0a0+29c30b1\nIs debug build: False\nCUDA used to build PyTorch: 12.2\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.2\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.0a0+29c30b1\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.0.0.dev20221202\n[conda] Could not collect",
|
515 |
+
"transformers_version": "4.47.0",
|
516 |
+
"upper_git_hash": "27ba526c4b16ee30604687f8bfd4c19680101dd1",
|
517 |
+
"tokenizer_pad_token": [
|
518 |
+
"<|endoftext|>",
|
519 |
+
"151643"
|
520 |
+
],
|
521 |
+
"tokenizer_eos_token": [
|
522 |
+
"<|endoftext|>",
|
523 |
+
"151643"
|
524 |
+
],
|
525 |
+
"tokenizer_bos_token": [
|
526 |
+
null,
|
527 |
+
"None"
|
528 |
+
],
|
529 |
+
"eot_token_id": 151643,
|
530 |
+
"max_length": 32768,
|
531 |
+
"task_hashes": {},
|
532 |
+
"model_source": "hf",
|
533 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
534 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
535 |
+
"system_instruction": null,
|
536 |
+
"system_instruction_sha": null,
|
537 |
+
"fewshot_as_multiturn": false,
|
538 |
+
"chat_template": null,
|
539 |
+
"chat_template_sha": null,
|
540 |
+
"start_time": 2367.995520754,
|
541 |
+
"end_time": 5482.980996963,
|
542 |
+
"total_evaluation_time_seconds": "3114.9854762089994"
|
543 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_mcq_0_shot.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_mcq": {
|
4 |
+
"alias": "moe_ien_mcq",
|
5 |
+
"acc,none": 0.816016016016016,
|
6 |
+
"acc_stderr,none": 0.0038768441643790346,
|
7 |
+
"acc_norm,none": 0.816016016016016,
|
8 |
+
"acc_norm_stderr,none": 0.0038768441643790346
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_mcq": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_mcq": {
|
16 |
+
"task": "moe_ien_mcq",
|
17 |
+
"dataset_path": "lm_eval/tasks/moe_ien_mcq/ien_moe_mcq.py",
|
18 |
+
"dataset_name": "moe_ien_mcq",
|
19 |
+
"dataset_kwargs": {
|
20 |
+
"trust_remote_code": true
|
21 |
+
},
|
22 |
+
"validation_split": "validation",
|
23 |
+
"test_split": "test",
|
24 |
+
"fewshot_split": "validation",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.split(\". \", 1)[1] if \". \" in choice else choice\n\n def format_example(doc, keys):\n question = doc[\"Question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"Choices\"])]\n \n )\n prompt = f\"\\n\\n\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"][0:len(doc[\"Choices\"])]\n out_doc = {\n \"Query\": format_example(doc, keys), \n \"Choices\": keys,\n \"gold\": int(doc[\"Answer\"])-1, ## \n } \n return out_doc\n \n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "Query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "{{Choices}}",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627\u202f\u064a\u0644\u064a\u202f\u0623\u0633\u0626\u0644\u0629\u202f\u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631\u202f\u0645\u0646\u202f\u0645\u062a\u0639\u062f\u062f\u202f(\u0645\u0639\u202f\u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a)\u202f\u0641\u064a\u202f{{Subject}}",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"fewshot_config": {
|
33 |
+
"sampler": "balanced_cat"
|
34 |
+
},
|
35 |
+
"num_fewshot": 0,
|
36 |
+
"metric_list": [
|
37 |
+
{
|
38 |
+
"metric": "acc",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"metric": "acc_norm",
|
44 |
+
"aggregation": "mean",
|
45 |
+
"higher_is_better": true
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"output_type": "multiple_choice",
|
49 |
+
"repeats": 1,
|
50 |
+
"should_decontaminate": true,
|
51 |
+
"doc_to_decontamination_query": "Query",
|
52 |
+
"metadata": {
|
53 |
+
"version": 0.0
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"versions": {
|
58 |
+
"moe_ien_mcq": 0.0
|
59 |
+
},
|
60 |
+
"n-shot": {
|
61 |
+
"moe_ien_mcq": 0
|
62 |
+
},
|
63 |
+
"higher_is_better": {
|
64 |
+
"moe_ien_mcq": {
|
65 |
+
"acc": true,
|
66 |
+
"acc_norm": true
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"n-samples": {
|
70 |
+
"moe_ien_mcq": {
|
71 |
+
"original": 9990,
|
72 |
+
"effective": 9990
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"config": {
|
76 |
+
"model": "hf",
|
77 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
78 |
+
"model_num_parameters": 32512545792,
|
79 |
+
"model_dtype": "torch.float16",
|
80 |
+
"model_revision": "main",
|
81 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
82 |
+
"batch_size": 1,
|
83 |
+
"batch_sizes": [],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "788a3672",
|
95 |
+
"date": 1738807582.4110897,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.2",
|
98 |
+
"upper_git_hash": null,
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<|endoftext|>",
|
101 |
+
"151643"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"<|endoftext|>",
|
105 |
+
"151643"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
null,
|
109 |
+
"None"
|
110 |
+
],
|
111 |
+
"eot_token_id": 151643,
|
112 |
+
"max_length": 32768,
|
113 |
+
"task_hashes": {
|
114 |
+
"moe_ien_mcq": "e5422ff2f277b9bfffeb1b5ad185b714804b5a3d276dfff99a29eb88d9a41683"
|
115 |
+
},
|
116 |
+
"model_source": "hf",
|
117 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
118 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
119 |
+
"system_instruction": null,
|
120 |
+
"system_instruction_sha": null,
|
121 |
+
"fewshot_as_multiturn": false,
|
122 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
123 |
+
"chat_template_sha": "af9c0233881b083b52ff773580215222b5440ac3d0beeeca99b76329b048f8db",
|
124 |
+
"start_time": 1766558.431540363,
|
125 |
+
"end_time": 1766704.504224634,
|
126 |
+
"total_evaluation_time_seconds": "146.07268427102827"
|
127 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_tf_0_shot.json
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_tf": {
|
4 |
+
"alias": "moe_ien_tf",
|
5 |
+
"acc,none": 0.8035376953460416,
|
6 |
+
"acc_stderr,none": 0.005207228603848848,
|
7 |
+
"acc_norm,none": 0.8035376953460416,
|
8 |
+
"acc_norm_stderr,none": 0.005207228603848848
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_tf": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_tf": {
|
16 |
+
"task": "moe_ien_tf",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/moe_ien_tf/moe_ien_tf.py",
|
21 |
+
"dataset_name": "moe_ien_tf",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n keys=[\"\u0635\u062d\u064a\u062d\u0629\",\n \"\u062e\u0627\u0637\u0626\u0629\"\n ]\n #keys =[\"\u0635\u0648\u0627\u0628\",\n # \"\u062e\u0637\u0623\"]\n target_key = int(doc[\"Answer\"])-1\n\n out_doc = {\n \"query\": \"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" +doc[\"Question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\", \n \"choices\": keys,\n \"gold\": target_key,\n }\n return out_doc\n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "choices",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{Subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d\u064a\u062d\u0629' \u0623\u0648 '\u062e\u0627\u0637\u0626\u0629' \u062f\u0648\u0646 \u0634\u0631\u062d ",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": false,
|
54 |
+
"metadata": {
|
55 |
+
"version": 2.0
|
56 |
+
}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"versions": {
|
60 |
+
"moe_ien_tf": 2.0
|
61 |
+
},
|
62 |
+
"n-shot": {
|
63 |
+
"moe_ien_tf": 0
|
64 |
+
},
|
65 |
+
"higher_is_better": {
|
66 |
+
"moe_ien_tf": {
|
67 |
+
"acc": true,
|
68 |
+
"acc_norm": true
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"n-samples": {
|
72 |
+
"moe_ien_tf": {
|
73 |
+
"original": 5823,
|
74 |
+
"effective": 5823
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"config": {
|
78 |
+
"model": "hf",
|
79 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-32B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
80 |
+
"model_num_parameters": 32512545792,
|
81 |
+
"model_dtype": "torch.float16",
|
82 |
+
"model_revision": "main",
|
83 |
+
"model_sha": "1c0ca4fb3fa4c292ac3d1f64f330f210c9f184d4",
|
84 |
+
"batch_size": 1,
|
85 |
+
"batch_sizes": [],
|
86 |
+
"device": null,
|
87 |
+
"use_cache": null,
|
88 |
+
"limit": null,
|
89 |
+
"bootstrap_iters": 100000,
|
90 |
+
"gen_kwargs": null,
|
91 |
+
"random_seed": 0,
|
92 |
+
"numpy_seed": 1234,
|
93 |
+
"torch_seed": 1234,
|
94 |
+
"fewshot_seed": 1234
|
95 |
+
},
|
96 |
+
"git_hash": "788a3672",
|
97 |
+
"date": 1738809377.2163908,
|
98 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
99 |
+
"transformers_version": "4.48.2",
|
100 |
+
"upper_git_hash": null,
|
101 |
+
"tokenizer_pad_token": [
|
102 |
+
"<|endoftext|>",
|
103 |
+
"151643"
|
104 |
+
],
|
105 |
+
"tokenizer_eos_token": [
|
106 |
+
"<|endoftext|>",
|
107 |
+
"151643"
|
108 |
+
],
|
109 |
+
"tokenizer_bos_token": [
|
110 |
+
null,
|
111 |
+
"None"
|
112 |
+
],
|
113 |
+
"eot_token_id": 151643,
|
114 |
+
"max_length": 32768,
|
115 |
+
"task_hashes": {
|
116 |
+
"moe_ien_tf": "116cb28cd11c72b01c3d52d75d3918c312d0a4f569bfdb8b2219398ec576a3f4"
|
117 |
+
},
|
118 |
+
"model_source": "hf",
|
119 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-32B-Chat",
|
120 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-32B-Chat",
|
121 |
+
"system_instruction": null,
|
122 |
+
"system_instruction_sha": null,
|
123 |
+
"fewshot_as_multiturn": false,
|
124 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
125 |
+
"chat_template_sha": "af9c0233881b083b52ff773580215222b5440ac3d0beeeca99b76329b048f8db",
|
126 |
+
"start_time": 1768353.06839988,
|
127 |
+
"end_time": 1768502.097875321,
|
128 |
+
"total_evaluation_time_seconds": "149.0294754409697"
|
129 |
+
}
|
evaluations/ar/AceGPT-v2-32B-Chat/openaimmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/AceGPT-v2-8B-Chat/acva_5_shot.json
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"acva": {
|
4 |
+
"alias": "acva",
|
5 |
+
"acc,none": 0.7415614236509759,
|
6 |
+
"acc_stderr,none": 0.004691028694524559,
|
7 |
+
"acc_norm,none": 0.7268656716417911,
|
8 |
+
"acc_norm_stderr,none": 0.004774534958083965
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"acva": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"acva": {
|
16 |
+
"task": "acva",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"test_split": "test",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "choices",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"num_fewshot": 5,
|
33 |
+
"metric_list": [
|
34 |
+
{
|
35 |
+
"metric": "acc",
|
36 |
+
"aggregation": "mean",
|
37 |
+
"higher_is_better": true
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"metric": "acc_norm",
|
41 |
+
"aggregation": "mean",
|
42 |
+
"higher_is_better": true
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"output_type": "multiple_choice",
|
46 |
+
"repeats": 1,
|
47 |
+
"should_decontaminate": false,
|
48 |
+
"metadata": {
|
49 |
+
"version": 0.0
|
50 |
+
}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"versions": {
|
54 |
+
"acva": 0.0
|
55 |
+
},
|
56 |
+
"n-shot": {
|
57 |
+
"acva": 5
|
58 |
+
},
|
59 |
+
"higher_is_better": {
|
60 |
+
"acva": {
|
61 |
+
"acc": true,
|
62 |
+
"acc_norm": true
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"n-samples": {
|
66 |
+
"acva": {
|
67 |
+
"original": 8710,
|
68 |
+
"effective": 8710
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"config": {
|
72 |
+
"model": "hf",
|
73 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
74 |
+
"model_num_parameters": 8030261248,
|
75 |
+
"model_dtype": "torch.float16",
|
76 |
+
"model_revision": "main",
|
77 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
78 |
+
"batch_size": "auto",
|
79 |
+
"batch_sizes": [
|
80 |
+
64
|
81 |
+
],
|
82 |
+
"device": null,
|
83 |
+
"use_cache": null,
|
84 |
+
"limit": null,
|
85 |
+
"bootstrap_iters": 100000,
|
86 |
+
"gen_kwargs": null,
|
87 |
+
"random_seed": 0,
|
88 |
+
"numpy_seed": 1234,
|
89 |
+
"torch_seed": 1234,
|
90 |
+
"fewshot_seed": 1234
|
91 |
+
},
|
92 |
+
"git_hash": "5e10e017",
|
93 |
+
"date": 1736966813.484974,
|
94 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
95 |
+
"transformers_version": "4.48.0",
|
96 |
+
"upper_git_hash": "2e5cd5395faf76fea1afc96dd0f7161a9d3aa145",
|
97 |
+
"tokenizer_pad_token": [
|
98 |
+
"<|end_of_text|>",
|
99 |
+
"128001"
|
100 |
+
],
|
101 |
+
"tokenizer_eos_token": [
|
102 |
+
"<|end_of_text|>",
|
103 |
+
"128001"
|
104 |
+
],
|
105 |
+
"tokenizer_bos_token": [
|
106 |
+
"<|begin_of_text|>",
|
107 |
+
"128000"
|
108 |
+
],
|
109 |
+
"eot_token_id": 128001,
|
110 |
+
"max_length": 8192,
|
111 |
+
"task_hashes": {},
|
112 |
+
"model_source": "hf",
|
113 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
114 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
115 |
+
"system_instruction": null,
|
116 |
+
"system_instruction_sha": null,
|
117 |
+
"fewshot_as_multiturn": false,
|
118 |
+
"chat_template": null,
|
119 |
+
"chat_template_sha": null,
|
120 |
+
"start_time": 2430.929540314,
|
121 |
+
"end_time": 3025.204908665,
|
122 |
+
"total_evaluation_time_seconds": "594.275368351"
|
123 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/ar_ifeval_0_shot.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ar_ifeval": {
|
4 |
+
"alias": "ar_ifeval",
|
5 |
+
"prompt_level_strict_acc,none": 0.10261194029850747,
|
6 |
+
"prompt_level_strict_acc_stderr,none": 0.01311934649092474,
|
7 |
+
"inst_level_strict_acc,none": 0.3924914675767918,
|
8 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
9 |
+
"prompt_level_loose_acc,none": 0.12126865671641791,
|
10 |
+
"prompt_level_loose_acc_stderr,none": 0.01411319854290401,
|
11 |
+
"inst_level_loose_acc,none": 0.42389078498293514,
|
12 |
+
"inst_level_loose_acc_stderr,none": "N/A"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"group_subtasks": {
|
16 |
+
"ar_ifeval": []
|
17 |
+
},
|
18 |
+
"configs": {
|
19 |
+
"ar_ifeval": {
|
20 |
+
"task": "ar_ifeval",
|
21 |
+
"dataset_path": "lm_eval/tasks/ar_ifeval/ar_ifeval.py",
|
22 |
+
"dataset_name": "ar_ifeval",
|
23 |
+
"dataset_kwargs": {
|
24 |
+
"trust_remote_code": true
|
25 |
+
},
|
26 |
+
"test_split": "test",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": 0,
|
29 |
+
"process_results": "def process_results(doc, results):\n\n response = results[0]\n out_strict = process_sample(doc, response, 'strict')\n out_loose = process_sample(doc, response, 'loose')\n\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "prompt_level_strict_acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "inst_level_strict_acc",
|
42 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "prompt_level_loose_acc",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"metric": "inst_level_loose_acc",
|
52 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
53 |
+
"higher_is_better": true
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"output_type": "generate_until",
|
57 |
+
"generation_kwargs": {
|
58 |
+
"until": [],
|
59 |
+
"do_sample": false,
|
60 |
+
"temperature": 0.0,
|
61 |
+
"max_gen_toks": 1280
|
62 |
+
},
|
63 |
+
"repeats": 1,
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 4.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"ar_ifeval": 4.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"ar_ifeval": 0
|
75 |
+
},
|
76 |
+
"higher_is_better": {
|
77 |
+
"ar_ifeval": {
|
78 |
+
"prompt_level_strict_acc": true,
|
79 |
+
"inst_level_strict_acc": true,
|
80 |
+
"prompt_level_loose_acc": true,
|
81 |
+
"inst_level_loose_acc": true
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"n-samples": {
|
85 |
+
"ar_ifeval": {
|
86 |
+
"original": 536,
|
87 |
+
"effective": 536
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"config": {
|
91 |
+
"model": "hf",
|
92 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
93 |
+
"model_num_parameters": 8030261248,
|
94 |
+
"model_dtype": "torch.float16",
|
95 |
+
"model_revision": "main",
|
96 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
97 |
+
"batch_size": 1,
|
98 |
+
"batch_sizes": [],
|
99 |
+
"device": null,
|
100 |
+
"use_cache": null,
|
101 |
+
"limit": null,
|
102 |
+
"bootstrap_iters": 100000,
|
103 |
+
"gen_kwargs": null,
|
104 |
+
"random_seed": 0,
|
105 |
+
"numpy_seed": 1234,
|
106 |
+
"torch_seed": 1234,
|
107 |
+
"fewshot_seed": 1234
|
108 |
+
},
|
109 |
+
"git_hash": "b955b2950",
|
110 |
+
"date": 1739784109.8369951,
|
111 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
112 |
+
"transformers_version": "4.48.3",
|
113 |
+
"upper_git_hash": null,
|
114 |
+
"tokenizer_pad_token": [
|
115 |
+
"<|end_of_text|>",
|
116 |
+
"128001"
|
117 |
+
],
|
118 |
+
"tokenizer_eos_token": [
|
119 |
+
"<|end_of_text|>",
|
120 |
+
"128001"
|
121 |
+
],
|
122 |
+
"tokenizer_bos_token": [
|
123 |
+
"<|begin_of_text|>",
|
124 |
+
"128000"
|
125 |
+
],
|
126 |
+
"eot_token_id": 128001,
|
127 |
+
"max_length": 8192,
|
128 |
+
"task_hashes": {
|
129 |
+
"ar_ifeval": "9ce88f26b4b78e684512ecd933af67fe512192f41e27d2bedc62f288943db360"
|
130 |
+
},
|
131 |
+
"model_source": "hf",
|
132 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
133 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
134 |
+
"system_instruction": null,
|
135 |
+
"system_instruction_sha": null,
|
136 |
+
"fewshot_as_multiturn": false,
|
137 |
+
"chat_template": null,
|
138 |
+
"chat_template_sha": null,
|
139 |
+
"start_time": 62023.729831301,
|
140 |
+
"end_time": 66967.714743853,
|
141 |
+
"total_evaluation_time_seconds": "4943.98491255199"
|
142 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/araMath_v3_5_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araMath_v3": {
|
4 |
+
"alias": "araMath_v3",
|
5 |
+
"acc,none": 0.41487603305785126,
|
6 |
+
"acc_stderr,none": 0.02004770429343817,
|
7 |
+
"acc_norm,none": 0.41487603305785126,
|
8 |
+
"acc_norm_stderr,none": 0.02004770429343817
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araMath_v3": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araMath_v3": {
|
16 |
+
"task": "araMath_v3",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araMath_v3/araMath_v3.py",
|
21 |
+
"dataset_name": "araMath_v3",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "{{choices}}",
|
31 |
+
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"araMath_v3": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"araMath_v3": 5
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"araMath_v3": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"araMath_v3": {
|
70 |
+
"original": 605,
|
71 |
+
"effective": 605
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
77 |
+
"model_num_parameters": 8030261248,
|
78 |
+
"model_dtype": "torch.float16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739784015.8084505,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|end_of_text|>",
|
100 |
+
"128001"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|end_of_text|>",
|
104 |
+
"128001"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<|begin_of_text|>",
|
108 |
+
"128000"
|
109 |
+
],
|
110 |
+
"eot_token_id": 128001,
|
111 |
+
"max_length": 8192,
|
112 |
+
"task_hashes": {
|
113 |
+
"araMath_v3": "4eebd1da6e6937fc09bb9f1871adb53192dbce96733f0f8ee76d406c2fc8cad5"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
117 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": null,
|
122 |
+
"chat_template_sha": null,
|
123 |
+
"start_time": 61929.69246185,
|
124 |
+
"end_time": 61980.464828513,
|
125 |
+
"total_evaluation_time_seconds": "50.772366663004505"
|
126 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/araPro_0_shot.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araPro": {
|
4 |
+
"alias": "araPro",
|
5 |
+
"acc,none": 0.6350729854029195,
|
6 |
+
"acc_stderr,none": 0.006808161111700288,
|
7 |
+
"acc_norm,none": 0.6350729854029195,
|
8 |
+
"acc_norm_stderr,none": 0.006808161111700288
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araPro": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araPro": {
|
16 |
+
"task": "araPro",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araPro/araPro.py",
|
21 |
+
"dataset_name": "araPro",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "{{choices}}",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": true,
|
54 |
+
"doc_to_decontamination_query": "Question",
|
55 |
+
"metadata": {
|
56 |
+
"version": 2.0
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"versions": {
|
61 |
+
"araPro": 2.0
|
62 |
+
},
|
63 |
+
"n-shot": {
|
64 |
+
"araPro": 0
|
65 |
+
},
|
66 |
+
"higher_is_better": {
|
67 |
+
"araPro": {
|
68 |
+
"acc": true,
|
69 |
+
"acc_norm": true
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"n-samples": {
|
73 |
+
"araPro": {
|
74 |
+
"original": 5001,
|
75 |
+
"effective": 5001
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"config": {
|
79 |
+
"model": "hf",
|
80 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
81 |
+
"model_num_parameters": 8030261248,
|
82 |
+
"model_dtype": "torch.float16",
|
83 |
+
"model_revision": "main",
|
84 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
85 |
+
"batch_size": 1,
|
86 |
+
"batch_sizes": [],
|
87 |
+
"device": null,
|
88 |
+
"use_cache": null,
|
89 |
+
"limit": null,
|
90 |
+
"bootstrap_iters": 100000,
|
91 |
+
"gen_kwargs": null,
|
92 |
+
"random_seed": 0,
|
93 |
+
"numpy_seed": 1234,
|
94 |
+
"torch_seed": 1234,
|
95 |
+
"fewshot_seed": 1234
|
96 |
+
},
|
97 |
+
"git_hash": "b955b2950",
|
98 |
+
"date": 1739782427.4652286,
|
99 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
100 |
+
"transformers_version": "4.48.3",
|
101 |
+
"upper_git_hash": null,
|
102 |
+
"tokenizer_pad_token": [
|
103 |
+
"<|end_of_text|>",
|
104 |
+
"128001"
|
105 |
+
],
|
106 |
+
"tokenizer_eos_token": [
|
107 |
+
"<|end_of_text|>",
|
108 |
+
"128001"
|
109 |
+
],
|
110 |
+
"tokenizer_bos_token": [
|
111 |
+
"<|begin_of_text|>",
|
112 |
+
"128000"
|
113 |
+
],
|
114 |
+
"eot_token_id": 128001,
|
115 |
+
"max_length": 8192,
|
116 |
+
"task_hashes": {
|
117 |
+
"araPro": "655c2f6626c4b10533bba45ff63f9d4501694dea7f65d0bb251390819154f901"
|
118 |
+
},
|
119 |
+
"model_source": "hf",
|
120 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
121 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
122 |
+
"system_instruction": null,
|
123 |
+
"system_instruction_sha": null,
|
124 |
+
"fewshot_as_multiturn": false,
|
125 |
+
"chat_template": null,
|
126 |
+
"chat_template_sha": null,
|
127 |
+
"start_time": 60341.23142254,
|
128 |
+
"end_time": 60939.383586887,
|
129 |
+
"total_evaluation_time_seconds": "598.1521643470041"
|
130 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/arabicmmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/AceGPT-v2-8B-Chat/etec_v2_0_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"etec_v2": {
|
4 |
+
"alias": "etec_v2",
|
5 |
+
"acc,none": 0.5680975092739798,
|
6 |
+
"acc_stderr,none": 0.011406002243769559,
|
7 |
+
"acc_norm,none": 0.5680975092739798,
|
8 |
+
"acc_norm_stderr,none": 0.011406002243769559
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"etec_v2": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"etec_v2": {
|
16 |
+
"task": "etec_v2",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/etec_v2/etec.py",
|
21 |
+
"dataset_name": "etec_v2",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n print(doc[\"label\"])\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": int(doc[\"label\"])-1,\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 0,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"etec_v2": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"etec_v2": 0
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"etec_v2": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"etec_v2": {
|
70 |
+
"original": 1887,
|
71 |
+
"effective": 1887
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
77 |
+
"model_num_parameters": 8030261248,
|
78 |
+
"model_dtype": "torch.float16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739783073.791851,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|end_of_text|>",
|
100 |
+
"128001"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|end_of_text|>",
|
104 |
+
"128001"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<|begin_of_text|>",
|
108 |
+
"128000"
|
109 |
+
],
|
110 |
+
"eot_token_id": 128001,
|
111 |
+
"max_length": 8192,
|
112 |
+
"task_hashes": {
|
113 |
+
"etec_v2": "d371135bd6f3e91b2eb292576c3b2fae24dc4c0d7cd2a5f6eacf1fe6bc062e76"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
117 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": null,
|
122 |
+
"chat_template_sha": null,
|
123 |
+
"start_time": 60987.772646854,
|
124 |
+
"end_time": 61072.230445773,
|
125 |
+
"total_evaluation_time_seconds": "84.4577989190002"
|
126 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/exams_ar_5_shot.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"exams_ar": {
|
4 |
+
"alias": "exams_ar",
|
5 |
+
"acc,none": 0.5195530726256983,
|
6 |
+
"acc_stderr,none": 0.02158019049784565,
|
7 |
+
"acc_norm,none": 0.5195530726256983,
|
8 |
+
"acc_norm_stderr,none": 0.02158019049784565
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"exams_ar": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"exams_ar": {
|
16 |
+
"task": "exams_ar",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/exams_ar",
|
21 |
+
"dataset_name": "exams_ar",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"test_split": "test",
|
26 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n\n def _process_docs(doc):\n def format_example(doc, keys):\n \"\"\"\n <prompt>\n \u0633\u0624\u0627\u0644:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n \u0627\u062c\u0627\u0628\u0629:\n \"\"\"\n \n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n def _format_subject(subject):\n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n\n keys = [\"A\", \"B\", \"C\", \"D\"]\n \n subject = doc['id'].split(\"-\")[0]\n description = f\"\ufed2\ufef4\ufee3\ufe8d \ufef2\ufee0\ufef3 \ufe84\ufeb4\ufe8c\ufedf\ufe93 \ufe8d\ufefc\ufea8\ufe98\ufef3\ufe8d\ufead \ufee2\ufee7 \ufee2\ufe98\ufecb\ufea9\ufea9 (\ufee2\ufecb \ufe8d\ufefa\ufe9f\ufe8e\ufe91\ufe8e\ufe97) \ufea1\ufeee\ufedf {_format_subject(subject)} \\n\" #\ufee2\ufee7 \ufed2\ufec0\ufee0\ufedb \ufe8e\ufea8\ufe97\ufead \ufe88\ufe9f\ufe8e\ufe91\ufe93 \ufeed\ufe8e\ufea3\ufea9\ufe93 \ufee2\ufee7 \ufe90\ufef4\ufee7 'A\u060c B\u060c C\u060c D' \ufea9\ufeee\ufee7 \ufeb5\ufeae\ufea3\\n\"\n\n out_doc = {\n \"idx\": doc[\"idx\"],\n \"id\": doc[\"id\"],\n 'dsecription': description,\n \"query\": format_example(doc, keys), # \"Question: \" + doc[\"question\"]['stem'] + \"\\nAnswer:\",\n \"choices\": keys,\n \"gold\": [\"A\", \"B\", \"C\", \"D\"].index(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_docs)\n",
|
27 |
+
"doc_to_text": "query",
|
28 |
+
"doc_to_target": "gold",
|
29 |
+
"doc_to_choice": "choices",
|
30 |
+
"description": "description",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 5,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "acc_norm",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "multiple_choice",
|
47 |
+
"repeats": 1,
|
48 |
+
"should_decontaminate": true,
|
49 |
+
"doc_to_decontamination_query": "query",
|
50 |
+
"metadata": {
|
51 |
+
"version": 0.0
|
52 |
+
}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"versions": {
|
56 |
+
"exams_ar": 0.0
|
57 |
+
},
|
58 |
+
"n-shot": {
|
59 |
+
"exams_ar": 5
|
60 |
+
},
|
61 |
+
"higher_is_better": {
|
62 |
+
"exams_ar": {
|
63 |
+
"acc": true,
|
64 |
+
"acc_norm": true
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"n-samples": {
|
68 |
+
"exams_ar": {
|
69 |
+
"original": 537,
|
70 |
+
"effective": 537
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"config": {
|
74 |
+
"model": "vllm",
|
75 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp",
|
76 |
+
"batch_size": 1,
|
77 |
+
"batch_sizes": [],
|
78 |
+
"device": null,
|
79 |
+
"use_cache": null,
|
80 |
+
"limit": null,
|
81 |
+
"bootstrap_iters": 100000,
|
82 |
+
"gen_kwargs": null,
|
83 |
+
"random_seed": 0,
|
84 |
+
"numpy_seed": 1234,
|
85 |
+
"torch_seed": 1234,
|
86 |
+
"fewshot_seed": 1234
|
87 |
+
},
|
88 |
+
"git_hash": "8e1bd48d",
|
89 |
+
"date": 1735747770.5687191,
|
90 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
91 |
+
"transformers_version": "4.47.1",
|
92 |
+
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
|
93 |
+
"tokenizer_pad_token": [
|
94 |
+
"<|end_of_text|>",
|
95 |
+
"128001"
|
96 |
+
],
|
97 |
+
"tokenizer_eos_token": [
|
98 |
+
"<|end_of_text|>",
|
99 |
+
"128001"
|
100 |
+
],
|
101 |
+
"tokenizer_bos_token": [
|
102 |
+
"<|begin_of_text|>",
|
103 |
+
"128000"
|
104 |
+
],
|
105 |
+
"eot_token_id": 128001,
|
106 |
+
"max_length": 8192,
|
107 |
+
"task_hashes": {},
|
108 |
+
"model_source": "vllm",
|
109 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
110 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
111 |
+
"system_instruction": null,
|
112 |
+
"system_instruction_sha": null,
|
113 |
+
"fewshot_as_multiturn": false,
|
114 |
+
"chat_template": null,
|
115 |
+
"chat_template_sha": null,
|
116 |
+
"start_time": 8055.848670643,
|
117 |
+
"end_time": 8272.25518881,
|
118 |
+
"total_evaluation_time_seconds": "216.40651816700029"
|
119 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/gat_0_shot.json
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gat": {
|
4 |
+
"acc,none": 0.3615326727706008,
|
5 |
+
"acc_stderr,none": 0.003748588350676633,
|
6 |
+
"alias": "gat"
|
7 |
+
},
|
8 |
+
"gat_algebra": {
|
9 |
+
"alias": " - gat_algebra",
|
10 |
+
"acc,none": 0.30241187384044527,
|
11 |
+
"acc_stderr,none": 0.008849121616191958
|
12 |
+
},
|
13 |
+
"gat_analogy": {
|
14 |
+
"alias": " - gat_analogy",
|
15 |
+
"acc,none": 0.3227686703096539,
|
16 |
+
"acc_stderr,none": 0.008925286248200312
|
17 |
+
},
|
18 |
+
"gat_arithmetic": {
|
19 |
+
"alias": " - gat_arithmetic",
|
20 |
+
"acc,none": 0.3213102686786897,
|
21 |
+
"acc_stderr,none": 0.008960516811645579
|
22 |
+
},
|
23 |
+
"gat_association": {
|
24 |
+
"alias": " - gat_association",
|
25 |
+
"acc,none": 0.39425837320574164,
|
26 |
+
"acc_stderr,none": 0.01512460088966808
|
27 |
+
},
|
28 |
+
"gat_comparisons": {
|
29 |
+
"alias": " - gat_comparisons",
|
30 |
+
"acc,none": 0.28114754098360656,
|
31 |
+
"acc_stderr,none": 0.012876124676937594
|
32 |
+
},
|
33 |
+
"gat_completion": {
|
34 |
+
"alias": " - gat_completion",
|
35 |
+
"acc,none": 0.46115702479338844,
|
36 |
+
"acc_stderr,none": 0.014336474830596175
|
37 |
+
},
|
38 |
+
"gat_contextual": {
|
39 |
+
"alias": " - gat_contextual",
|
40 |
+
"acc,none": 0.2983128834355828,
|
41 |
+
"acc_stderr,none": 0.012674637536976358
|
42 |
+
},
|
43 |
+
"gat_geometry": {
|
44 |
+
"alias": " - gat_geometry",
|
45 |
+
"acc,none": 0.3232876712328767,
|
46 |
+
"acc_stderr,none": 0.024515791774351408
|
47 |
+
},
|
48 |
+
"gat_reading": {
|
49 |
+
"alias": " - gat_reading",
|
50 |
+
"acc,none": 0.5183364839319471,
|
51 |
+
"acc_stderr,none": 0.009717331969425425
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"groups": {
|
55 |
+
"gat": {
|
56 |
+
"acc,none": 0.3615326727706008,
|
57 |
+
"acc_stderr,none": 0.003748588350676633,
|
58 |
+
"alias": "gat"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"group_subtasks": {
|
62 |
+
"gat": [
|
63 |
+
"gat_analogy",
|
64 |
+
"gat_association",
|
65 |
+
"gat_completion",
|
66 |
+
"gat_reading",
|
67 |
+
"gat_algebra",
|
68 |
+
"gat_arithmetic",
|
69 |
+
"gat_comparisons",
|
70 |
+
"gat_contextual",
|
71 |
+
"gat_geometry"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"configs": {
|
75 |
+
"gat_algebra": {
|
76 |
+
"task": "gat_algebra",
|
77 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
78 |
+
"dataset_name": "algebra",
|
79 |
+
"dataset_kwargs": {
|
80 |
+
"trust_remote_code": true
|
81 |
+
},
|
82 |
+
"test_split": "test",
|
83 |
+
"fewshot_split": "validation",
|
84 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
85 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
86 |
+
"doc_to_target": "{{label}}",
|
87 |
+
"doc_to_choice": [
|
88 |
+
"\u0623",
|
89 |
+
"\u0628",
|
90 |
+
"\u062c",
|
91 |
+
"\u062f"
|
92 |
+
],
|
93 |
+
"description": "",
|
94 |
+
"target_delimiter": " ",
|
95 |
+
"fewshot_delimiter": "\n\n",
|
96 |
+
"num_fewshot": 0,
|
97 |
+
"metric_list": [
|
98 |
+
{
|
99 |
+
"metric": "acc",
|
100 |
+
"aggregation": "mean",
|
101 |
+
"higher_is_better": true
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"output_type": "multiple_choice",
|
105 |
+
"repeats": 1,
|
106 |
+
"should_decontaminate": false,
|
107 |
+
"metadata": {
|
108 |
+
"version": 0.0
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"gat_analogy": {
|
112 |
+
"task": "gat_analogy",
|
113 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
114 |
+
"dataset_name": "analogy",
|
115 |
+
"dataset_kwargs": {
|
116 |
+
"trust_remote_code": true
|
117 |
+
},
|
118 |
+
"test_split": "test",
|
119 |
+
"fewshot_split": "validation",
|
120 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
121 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
122 |
+
"doc_to_target": "{{label}}",
|
123 |
+
"doc_to_choice": [
|
124 |
+
"\u0623",
|
125 |
+
"\u0628",
|
126 |
+
"\u062c",
|
127 |
+
"\u062f"
|
128 |
+
],
|
129 |
+
"description": "",
|
130 |
+
"target_delimiter": " ",
|
131 |
+
"fewshot_delimiter": "\n\n",
|
132 |
+
"num_fewshot": 0,
|
133 |
+
"metric_list": [
|
134 |
+
{
|
135 |
+
"metric": "acc",
|
136 |
+
"aggregation": "mean",
|
137 |
+
"higher_is_better": true
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"output_type": "multiple_choice",
|
141 |
+
"repeats": 1,
|
142 |
+
"should_decontaminate": false,
|
143 |
+
"metadata": {
|
144 |
+
"version": 0.0
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"gat_arithmetic": {
|
148 |
+
"task": "gat_arithmetic",
|
149 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
150 |
+
"dataset_name": "arithmetic",
|
151 |
+
"dataset_kwargs": {
|
152 |
+
"trust_remote_code": true
|
153 |
+
},
|
154 |
+
"test_split": "test",
|
155 |
+
"fewshot_split": "validation",
|
156 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
157 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
158 |
+
"doc_to_target": "{{label}}",
|
159 |
+
"doc_to_choice": [
|
160 |
+
"\u0623",
|
161 |
+
"\u0628",
|
162 |
+
"\u062c",
|
163 |
+
"\u062f"
|
164 |
+
],
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"num_fewshot": 0,
|
169 |
+
"metric_list": [
|
170 |
+
{
|
171 |
+
"metric": "acc",
|
172 |
+
"aggregation": "mean",
|
173 |
+
"higher_is_better": true
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"output_type": "multiple_choice",
|
177 |
+
"repeats": 1,
|
178 |
+
"should_decontaminate": false,
|
179 |
+
"metadata": {
|
180 |
+
"version": 0.0
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"gat_association": {
|
184 |
+
"task": "gat_association",
|
185 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
186 |
+
"dataset_name": "association",
|
187 |
+
"dataset_kwargs": {
|
188 |
+
"trust_remote_code": true
|
189 |
+
},
|
190 |
+
"test_split": "test",
|
191 |
+
"fewshot_split": "validation",
|
192 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
193 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
194 |
+
"doc_to_target": "{{label}}",
|
195 |
+
"doc_to_choice": [
|
196 |
+
"\u0623",
|
197 |
+
"\u0628",
|
198 |
+
"\u062c",
|
199 |
+
"\u062f"
|
200 |
+
],
|
201 |
+
"description": "",
|
202 |
+
"target_delimiter": " ",
|
203 |
+
"fewshot_delimiter": "\n\n",
|
204 |
+
"num_fewshot": 0,
|
205 |
+
"metric_list": [
|
206 |
+
{
|
207 |
+
"metric": "acc",
|
208 |
+
"aggregation": "mean",
|
209 |
+
"higher_is_better": true
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"output_type": "multiple_choice",
|
213 |
+
"repeats": 1,
|
214 |
+
"should_decontaminate": false,
|
215 |
+
"metadata": {
|
216 |
+
"version": 0.0
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"gat_comparisons": {
|
220 |
+
"task": "gat_comparisons",
|
221 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
222 |
+
"dataset_name": "comparisons",
|
223 |
+
"dataset_kwargs": {
|
224 |
+
"trust_remote_code": true
|
225 |
+
},
|
226 |
+
"test_split": "test",
|
227 |
+
"fewshot_split": "validation",
|
228 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
229 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
230 |
+
"doc_to_target": "{{label}}",
|
231 |
+
"doc_to_choice": [
|
232 |
+
"\u0623",
|
233 |
+
"\u0628",
|
234 |
+
"\u062c",
|
235 |
+
"\u062f"
|
236 |
+
],
|
237 |
+
"description": "",
|
238 |
+
"target_delimiter": " ",
|
239 |
+
"fewshot_delimiter": "\n\n",
|
240 |
+
"num_fewshot": 0,
|
241 |
+
"metric_list": [
|
242 |
+
{
|
243 |
+
"metric": "acc",
|
244 |
+
"aggregation": "mean",
|
245 |
+
"higher_is_better": true
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"output_type": "multiple_choice",
|
249 |
+
"repeats": 1,
|
250 |
+
"should_decontaminate": false,
|
251 |
+
"metadata": {
|
252 |
+
"version": 0.0
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"gat_completion": {
|
256 |
+
"task": "gat_completion",
|
257 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
258 |
+
"dataset_name": "completion",
|
259 |
+
"dataset_kwargs": {
|
260 |
+
"trust_remote_code": true
|
261 |
+
},
|
262 |
+
"test_split": "test",
|
263 |
+
"fewshot_split": "validation",
|
264 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
265 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
266 |
+
"doc_to_target": "{{label}}",
|
267 |
+
"doc_to_choice": [
|
268 |
+
"\u0623",
|
269 |
+
"\u0628",
|
270 |
+
"\u062c",
|
271 |
+
"\u062f"
|
272 |
+
],
|
273 |
+
"description": "",
|
274 |
+
"target_delimiter": " ",
|
275 |
+
"fewshot_delimiter": "\n\n",
|
276 |
+
"num_fewshot": 0,
|
277 |
+
"metric_list": [
|
278 |
+
{
|
279 |
+
"metric": "acc",
|
280 |
+
"aggregation": "mean",
|
281 |
+
"higher_is_better": true
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"output_type": "multiple_choice",
|
285 |
+
"repeats": 1,
|
286 |
+
"should_decontaminate": false,
|
287 |
+
"metadata": {
|
288 |
+
"version": 0.0
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"gat_contextual": {
|
292 |
+
"task": "gat_contextual",
|
293 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
294 |
+
"dataset_name": "contextual",
|
295 |
+
"dataset_kwargs": {
|
296 |
+
"trust_remote_code": true
|
297 |
+
},
|
298 |
+
"test_split": "test",
|
299 |
+
"fewshot_split": "validation",
|
300 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
301 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
302 |
+
"doc_to_target": "{{label}}",
|
303 |
+
"doc_to_choice": [
|
304 |
+
"\u0623",
|
305 |
+
"\u0628",
|
306 |
+
"\u062c",
|
307 |
+
"\u062f"
|
308 |
+
],
|
309 |
+
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
|
310 |
+
"target_delimiter": " ",
|
311 |
+
"fewshot_delimiter": "\n\n",
|
312 |
+
"num_fewshot": 0,
|
313 |
+
"metric_list": [
|
314 |
+
{
|
315 |
+
"metric": "acc",
|
316 |
+
"aggregation": "mean",
|
317 |
+
"higher_is_better": true
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"output_type": "multiple_choice",
|
321 |
+
"repeats": 1,
|
322 |
+
"should_decontaminate": false,
|
323 |
+
"metadata": {
|
324 |
+
"version": 0.0
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"gat_geometry": {
|
328 |
+
"task": "gat_geometry",
|
329 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
330 |
+
"dataset_name": "geometry",
|
331 |
+
"dataset_kwargs": {
|
332 |
+
"trust_remote_code": true
|
333 |
+
},
|
334 |
+
"test_split": "test",
|
335 |
+
"fewshot_split": "validation",
|
336 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
337 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
338 |
+
"doc_to_target": "{{label}}",
|
339 |
+
"doc_to_choice": [
|
340 |
+
"\u0623",
|
341 |
+
"\u0628",
|
342 |
+
"\u062c",
|
343 |
+
"\u062f"
|
344 |
+
],
|
345 |
+
"description": "",
|
346 |
+
"target_delimiter": " ",
|
347 |
+
"fewshot_delimiter": "\n\n",
|
348 |
+
"num_fewshot": 0,
|
349 |
+
"metric_list": [
|
350 |
+
{
|
351 |
+
"metric": "acc",
|
352 |
+
"aggregation": "mean",
|
353 |
+
"higher_is_better": true
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"output_type": "multiple_choice",
|
357 |
+
"repeats": 1,
|
358 |
+
"should_decontaminate": false,
|
359 |
+
"metadata": {
|
360 |
+
"version": 0.0
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"gat_reading": {
|
364 |
+
"task": "gat_reading",
|
365 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
366 |
+
"dataset_name": "reading",
|
367 |
+
"dataset_kwargs": {
|
368 |
+
"trust_remote_code": true
|
369 |
+
},
|
370 |
+
"test_split": "test",
|
371 |
+
"fewshot_split": "validation",
|
372 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
373 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
374 |
+
"doc_to_target": "{{label}}",
|
375 |
+
"doc_to_choice": [
|
376 |
+
"\u0623",
|
377 |
+
"\u0628",
|
378 |
+
"\u062c",
|
379 |
+
"\u062f"
|
380 |
+
],
|
381 |
+
"description": "",
|
382 |
+
"target_delimiter": " ",
|
383 |
+
"fewshot_delimiter": "\n\n",
|
384 |
+
"num_fewshot": 0,
|
385 |
+
"metric_list": [
|
386 |
+
{
|
387 |
+
"metric": "acc",
|
388 |
+
"aggregation": "mean",
|
389 |
+
"higher_is_better": true
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"output_type": "multiple_choice",
|
393 |
+
"repeats": 1,
|
394 |
+
"should_decontaminate": false,
|
395 |
+
"metadata": {
|
396 |
+
"version": 0.0
|
397 |
+
}
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"versions": {
|
401 |
+
"gat": 0,
|
402 |
+
"gat_algebra": 0.0,
|
403 |
+
"gat_analogy": 0.0,
|
404 |
+
"gat_arithmetic": 0.0,
|
405 |
+
"gat_association": 0.0,
|
406 |
+
"gat_comparisons": 0.0,
|
407 |
+
"gat_completion": 0.0,
|
408 |
+
"gat_contextual": 0.0,
|
409 |
+
"gat_geometry": 0.0,
|
410 |
+
"gat_reading": 0.0
|
411 |
+
},
|
412 |
+
"n-shot": {
|
413 |
+
"gat_algebra": 0,
|
414 |
+
"gat_analogy": 0,
|
415 |
+
"gat_arithmetic": 0,
|
416 |
+
"gat_association": 0,
|
417 |
+
"gat_comparisons": 0,
|
418 |
+
"gat_completion": 0,
|
419 |
+
"gat_contextual": 0,
|
420 |
+
"gat_geometry": 0,
|
421 |
+
"gat_reading": 0
|
422 |
+
},
|
423 |
+
"higher_is_better": {
|
424 |
+
"gat": {
|
425 |
+
"acc": true
|
426 |
+
},
|
427 |
+
"gat_algebra": {
|
428 |
+
"acc": true
|
429 |
+
},
|
430 |
+
"gat_analogy": {
|
431 |
+
"acc": true
|
432 |
+
},
|
433 |
+
"gat_arithmetic": {
|
434 |
+
"acc": true
|
435 |
+
},
|
436 |
+
"gat_association": {
|
437 |
+
"acc": true
|
438 |
+
},
|
439 |
+
"gat_comparisons": {
|
440 |
+
"acc": true
|
441 |
+
},
|
442 |
+
"gat_completion": {
|
443 |
+
"acc": true
|
444 |
+
},
|
445 |
+
"gat_contextual": {
|
446 |
+
"acc": true
|
447 |
+
},
|
448 |
+
"gat_geometry": {
|
449 |
+
"acc": true
|
450 |
+
},
|
451 |
+
"gat_reading": {
|
452 |
+
"acc": true
|
453 |
+
}
|
454 |
+
},
|
455 |
+
"n-samples": {
|
456 |
+
"gat_analogy": {
|
457 |
+
"original": 2745,
|
458 |
+
"effective": 2745
|
459 |
+
},
|
460 |
+
"gat_association": {
|
461 |
+
"original": 1045,
|
462 |
+
"effective": 1045
|
463 |
+
},
|
464 |
+
"gat_completion": {
|
465 |
+
"original": 1210,
|
466 |
+
"effective": 1210
|
467 |
+
},
|
468 |
+
"gat_reading": {
|
469 |
+
"original": 2645,
|
470 |
+
"effective": 2645
|
471 |
+
},
|
472 |
+
"gat_algebra": {
|
473 |
+
"original": 2695,
|
474 |
+
"effective": 2695
|
475 |
+
},
|
476 |
+
"gat_arithmetic": {
|
477 |
+
"original": 2717,
|
478 |
+
"effective": 2717
|
479 |
+
},
|
480 |
+
"gat_comparisons": {
|
481 |
+
"original": 1220,
|
482 |
+
"effective": 1220
|
483 |
+
},
|
484 |
+
"gat_contextual": {
|
485 |
+
"original": 1304,
|
486 |
+
"effective": 1304
|
487 |
+
},
|
488 |
+
"gat_geometry": {
|
489 |
+
"original": 365,
|
490 |
+
"effective": 365
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"config": {
|
494 |
+
"model": "vllm",
|
495 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp",
|
496 |
+
"batch_size": 1,
|
497 |
+
"batch_sizes": [],
|
498 |
+
"device": null,
|
499 |
+
"use_cache": null,
|
500 |
+
"limit": null,
|
501 |
+
"bootstrap_iters": 100000,
|
502 |
+
"gen_kwargs": null,
|
503 |
+
"random_seed": 0,
|
504 |
+
"numpy_seed": 1234,
|
505 |
+
"torch_seed": 1234,
|
506 |
+
"fewshot_seed": 1234
|
507 |
+
},
|
508 |
+
"git_hash": "8e1bd48d",
|
509 |
+
"date": 1735749781.6371627,
|
510 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
511 |
+
"transformers_version": "4.47.1",
|
512 |
+
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
|
513 |
+
"tokenizer_pad_token": [
|
514 |
+
"<|end_of_text|>",
|
515 |
+
"128001"
|
516 |
+
],
|
517 |
+
"tokenizer_eos_token": [
|
518 |
+
"<|end_of_text|>",
|
519 |
+
"128001"
|
520 |
+
],
|
521 |
+
"tokenizer_bos_token": [
|
522 |
+
"<|begin_of_text|>",
|
523 |
+
"128000"
|
524 |
+
],
|
525 |
+
"eot_token_id": 128001,
|
526 |
+
"max_length": 8192,
|
527 |
+
"task_hashes": {},
|
528 |
+
"model_source": "vllm",
|
529 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
530 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
531 |
+
"system_instruction": null,
|
532 |
+
"system_instruction_sha": null,
|
533 |
+
"fewshot_as_multiturn": false,
|
534 |
+
"chat_template": null,
|
535 |
+
"chat_template_sha": null,
|
536 |
+
"start_time": 10066.91226392,
|
537 |
+
"end_time": 10586.891967311,
|
538 |
+
"total_evaluation_time_seconds": "519.9797033909999"
|
539 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_mcq_0_shot.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_mcq": {
|
4 |
+
"alias": "moe_ien_mcq",
|
5 |
+
"acc,none": 0.7700700700700701,
|
6 |
+
"acc_stderr,none": 0.0042101916833611345,
|
7 |
+
"acc_norm,none": 0.7700700700700701,
|
8 |
+
"acc_norm_stderr,none": 0.0042101916833611345
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_mcq": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_mcq": {
|
16 |
+
"task": "moe_ien_mcq",
|
17 |
+
"dataset_path": "lm_eval/tasks/moe_ien_mcq/ien_moe_mcq.py",
|
18 |
+
"dataset_name": "moe_ien_mcq",
|
19 |
+
"dataset_kwargs": {
|
20 |
+
"trust_remote_code": true
|
21 |
+
},
|
22 |
+
"validation_split": "validation",
|
23 |
+
"test_split": "test",
|
24 |
+
"fewshot_split": "validation",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.split(\". \", 1)[1] if \". \" in choice else choice\n\n def format_example(doc, keys):\n question = doc[\"Question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"Choices\"])]\n \n )\n prompt = f\"\\n\\n\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"][0:len(doc[\"Choices\"])]\n out_doc = {\n \"Query\": format_example(doc, keys), \n \"Choices\": keys,\n \"gold\": int(doc[\"Answer\"])-1, ## \n } \n return out_doc\n \n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "Query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "{{Choices}}",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627\u202f\u064a\u0644\u064a\u202f\u0623\u0633\u0626\u0644\u0629\u202f\u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631\u202f\u0645\u0646\u202f\u0645\u062a\u0639\u062f\u062f\u202f(\u0645\u0639\u202f\u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a)\u202f\u0641\u064a\u202f{{Subject}}",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"fewshot_config": {
|
33 |
+
"sampler": "balanced_cat"
|
34 |
+
},
|
35 |
+
"num_fewshot": 0,
|
36 |
+
"metric_list": [
|
37 |
+
{
|
38 |
+
"metric": "acc",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"metric": "acc_norm",
|
44 |
+
"aggregation": "mean",
|
45 |
+
"higher_is_better": true
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"output_type": "multiple_choice",
|
49 |
+
"repeats": 1,
|
50 |
+
"should_decontaminate": true,
|
51 |
+
"doc_to_decontamination_query": "Query",
|
52 |
+
"metadata": {
|
53 |
+
"version": 0.0
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"versions": {
|
58 |
+
"moe_ien_mcq": 0.0
|
59 |
+
},
|
60 |
+
"n-shot": {
|
61 |
+
"moe_ien_mcq": 0
|
62 |
+
},
|
63 |
+
"higher_is_better": {
|
64 |
+
"moe_ien_mcq": {
|
65 |
+
"acc": true,
|
66 |
+
"acc_norm": true
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"n-samples": {
|
70 |
+
"moe_ien_mcq": {
|
71 |
+
"original": 9990,
|
72 |
+
"effective": 9990
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"config": {
|
76 |
+
"model": "hf",
|
77 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
78 |
+
"model_num_parameters": 8030261248,
|
79 |
+
"model_dtype": "torch.float16",
|
80 |
+
"model_revision": "main",
|
81 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
82 |
+
"batch_size": 1,
|
83 |
+
"batch_sizes": [],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "b955b2950",
|
95 |
+
"date": 1739783202.062394,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.3",
|
98 |
+
"upper_git_hash": null,
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<|end_of_text|>",
|
101 |
+
"128001"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"<|end_of_text|>",
|
105 |
+
"128001"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
"<|begin_of_text|>",
|
109 |
+
"128000"
|
110 |
+
],
|
111 |
+
"eot_token_id": 128001,
|
112 |
+
"max_length": 8192,
|
113 |
+
"task_hashes": {
|
114 |
+
"moe_ien_mcq": "99731f9d1bb76d010da5a439ea1b0bb7695451459d680f708f7222f02ba8e831"
|
115 |
+
},
|
116 |
+
"model_source": "hf",
|
117 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
118 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
119 |
+
"system_instruction": null,
|
120 |
+
"system_instruction_sha": null,
|
121 |
+
"fewshot_as_multiturn": false,
|
122 |
+
"chat_template": null,
|
123 |
+
"chat_template_sha": null,
|
124 |
+
"start_time": 61116.014324615,
|
125 |
+
"end_time": 61463.567260828,
|
126 |
+
"total_evaluation_time_seconds": "347.5529362130037"
|
127 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_tf_0_shot.json
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_tf": {
|
4 |
+
"alias": "moe_ien_tf",
|
5 |
+
"acc,none": 0.7590589043448395,
|
6 |
+
"acc_stderr,none": 0.00560476076159517,
|
7 |
+
"acc_norm,none": 0.7590589043448395,
|
8 |
+
"acc_norm_stderr,none": 0.00560476076159517
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_tf": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_tf": {
|
16 |
+
"task": "moe_ien_tf",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/moe_ien_tf/moe_ien_tf.py",
|
21 |
+
"dataset_name": "moe_ien_tf",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n keys=[\"\u0635\u062d\u064a\u062d\u0629\",\n \"\u062e\u0627\u0637\u0626\u0629\"\n ]\n #keys =[\"\u0635\u0648\u0627\u0628\",\n # \"\u062e\u0637\u0623\"]\n target_key = int(doc[\"Answer\"])-1\n\n out_doc = {\n \"query\": \"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" +doc[\"Question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\", \n \"choices\": keys,\n \"gold\": target_key,\n }\n return out_doc\n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "choices",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{Subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d\u064a\u062d\u0629' \u0623\u0648 '\u062e\u0627\u0637\u0626\u0629' \u062f\u0648\u0646 \u0634\u0631\u062d ",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": false,
|
54 |
+
"metadata": {
|
55 |
+
"version": 2.0
|
56 |
+
}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"versions": {
|
60 |
+
"moe_ien_tf": 2.0
|
61 |
+
},
|
62 |
+
"n-shot": {
|
63 |
+
"moe_ien_tf": 0
|
64 |
+
},
|
65 |
+
"higher_is_better": {
|
66 |
+
"moe_ien_tf": {
|
67 |
+
"acc": true,
|
68 |
+
"acc_norm": true
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"n-samples": {
|
72 |
+
"moe_ien_tf": {
|
73 |
+
"original": 5823,
|
74 |
+
"effective": 5823
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"config": {
|
78 |
+
"model": "hf",
|
79 |
+
"model_args": "pretrained=FreedomIntelligence/AceGPT-v2-8B-Chat,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
80 |
+
"model_num_parameters": 8030261248,
|
81 |
+
"model_dtype": "torch.float16",
|
82 |
+
"model_revision": "main",
|
83 |
+
"model_sha": "562d0998c03c02d315e346f81650a43955711901",
|
84 |
+
"batch_size": 1,
|
85 |
+
"batch_sizes": [],
|
86 |
+
"device": null,
|
87 |
+
"use_cache": null,
|
88 |
+
"limit": null,
|
89 |
+
"bootstrap_iters": 100000,
|
90 |
+
"gen_kwargs": null,
|
91 |
+
"random_seed": 0,
|
92 |
+
"numpy_seed": 1234,
|
93 |
+
"torch_seed": 1234,
|
94 |
+
"fewshot_seed": 1234
|
95 |
+
},
|
96 |
+
"git_hash": "b955b2950",
|
97 |
+
"date": 1739783594.7150183,
|
98 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
99 |
+
"transformers_version": "4.48.3",
|
100 |
+
"upper_git_hash": null,
|
101 |
+
"tokenizer_pad_token": [
|
102 |
+
"<|end_of_text|>",
|
103 |
+
"128001"
|
104 |
+
],
|
105 |
+
"tokenizer_eos_token": [
|
106 |
+
"<|end_of_text|>",
|
107 |
+
"128001"
|
108 |
+
],
|
109 |
+
"tokenizer_bos_token": [
|
110 |
+
"<|begin_of_text|>",
|
111 |
+
"128000"
|
112 |
+
],
|
113 |
+
"eot_token_id": 128001,
|
114 |
+
"max_length": 8192,
|
115 |
+
"task_hashes": {
|
116 |
+
"moe_ien_tf": "a8315c59ec304a82f04395ff5e7728d6586b1b0b5f569486840b7d29d76a8dd8"
|
117 |
+
},
|
118 |
+
"model_source": "hf",
|
119 |
+
"model_name": "FreedomIntelligence/AceGPT-v2-8B-Chat",
|
120 |
+
"model_name_sanitized": "FreedomIntelligence__AceGPT-v2-8B-Chat",
|
121 |
+
"system_instruction": null,
|
122 |
+
"system_instruction_sha": null,
|
123 |
+
"fewshot_as_multiturn": false,
|
124 |
+
"chat_template": null,
|
125 |
+
"chat_template_sha": null,
|
126 |
+
"start_time": 61508.598662402,
|
127 |
+
"end_time": 61883.458017876,
|
128 |
+
"total_evaluation_time_seconds": "374.85935547400004"
|
129 |
+
}
|
evaluations/ar/AceGPT-v2-8B-Chat/openaimmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/Allam-7b-instruct-preview/acva_5_shot.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"acva": {
|
4 |
+
"alias": "acva",
|
5 |
+
"acc,none": 0.7746268656716417,
|
6 |
+
"acc_stderr,none": 0.004477269169728854,
|
7 |
+
"acc_norm,none": 0.7632606199770379,
|
8 |
+
"acc_norm_stderr,none": 0.004554991129754026
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"acva": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"acva": {
|
16 |
+
"task": "acva",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"test_split": "test",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "choices",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"num_fewshot": 5,
|
33 |
+
"metric_list": [
|
34 |
+
{
|
35 |
+
"metric": "acc",
|
36 |
+
"aggregation": "mean",
|
37 |
+
"higher_is_better": true
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"metric": "acc_norm",
|
41 |
+
"aggregation": "mean",
|
42 |
+
"higher_is_better": true
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"output_type": "multiple_choice",
|
46 |
+
"repeats": 1,
|
47 |
+
"should_decontaminate": false,
|
48 |
+
"metadata": {
|
49 |
+
"version": 0.0
|
50 |
+
}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"versions": {
|
54 |
+
"acva": 0.0
|
55 |
+
},
|
56 |
+
"n-shot": {
|
57 |
+
"acva": 5
|
58 |
+
},
|
59 |
+
"higher_is_better": {
|
60 |
+
"acva": {
|
61 |
+
"acc": true,
|
62 |
+
"acc_norm": true
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"n-samples": {
|
66 |
+
"acva": {
|
67 |
+
"original": 8710,
|
68 |
+
"effective": 8710
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"config": {
|
72 |
+
"model": "vllm",
|
73 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
74 |
+
"batch_size": 1,
|
75 |
+
"batch_sizes": [],
|
76 |
+
"device": null,
|
77 |
+
"use_cache": null,
|
78 |
+
"limit": null,
|
79 |
+
"bootstrap_iters": 100000,
|
80 |
+
"gen_kwargs": null,
|
81 |
+
"random_seed": 0,
|
82 |
+
"numpy_seed": 1234,
|
83 |
+
"torch_seed": 1234,
|
84 |
+
"fewshot_seed": 1234
|
85 |
+
},
|
86 |
+
"git_hash": "8e1bd48d",
|
87 |
+
"date": 1735662713.7617116,
|
88 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
89 |
+
"transformers_version": "4.47.1",
|
90 |
+
"upper_git_hash": null,
|
91 |
+
"tokenizer_pad_token": [
|
92 |
+
"<unk>",
|
93 |
+
"0"
|
94 |
+
],
|
95 |
+
"tokenizer_eos_token": [
|
96 |
+
"</s>",
|
97 |
+
"2"
|
98 |
+
],
|
99 |
+
"tokenizer_bos_token": [
|
100 |
+
"<s>",
|
101 |
+
"1"
|
102 |
+
],
|
103 |
+
"eot_token_id": 2,
|
104 |
+
"max_length": 4096,
|
105 |
+
"task_hashes": {
|
106 |
+
"acva": "d007c508f0accdd697f549d7cbe7f960f1470c8f86f1a0969355a6ef33108edb"
|
107 |
+
},
|
108 |
+
"model_source": "vllm",
|
109 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
110 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
111 |
+
"system_instruction": null,
|
112 |
+
"system_instruction_sha": null,
|
113 |
+
"fewshot_as_multiturn": false,
|
114 |
+
"chat_template": null,
|
115 |
+
"chat_template_sha": null,
|
116 |
+
"start_time": 3374.021232778,
|
117 |
+
"end_time": 3578.563943596,
|
118 |
+
"total_evaluation_time_seconds": "204.54271081800016"
|
119 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/ar_ifeval_0_shot.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ar_ifeval": {
|
4 |
+
"alias": "ar_ifeval",
|
5 |
+
"prompt_level_strict_acc,none": 0.31343283582089554,
|
6 |
+
"prompt_level_strict_acc_stderr,none": 0.020055655889994813,
|
7 |
+
"inst_level_strict_acc,none": 0.6764505119453925,
|
8 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
9 |
+
"prompt_level_loose_acc,none": 0.3656716417910448,
|
10 |
+
"prompt_level_loose_acc_stderr,none": 0.020822161638297296,
|
11 |
+
"inst_level_loose_acc,none": 0.7051194539249147,
|
12 |
+
"inst_level_loose_acc_stderr,none": "N/A"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"group_subtasks": {
|
16 |
+
"ar_ifeval": []
|
17 |
+
},
|
18 |
+
"configs": {
|
19 |
+
"ar_ifeval": {
|
20 |
+
"task": "ar_ifeval",
|
21 |
+
"dataset_path": "lm_eval/tasks/ar_ifeval/ar_ifeval.py",
|
22 |
+
"dataset_name": "ar_ifeval",
|
23 |
+
"dataset_kwargs": {
|
24 |
+
"trust_remote_code": true
|
25 |
+
},
|
26 |
+
"test_split": "test",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": 0,
|
29 |
+
"process_results": "def process_results(doc, results):\n\n response = results[0]\n out_strict = process_sample(doc, response, 'strict')\n out_loose = process_sample(doc, response, 'loose')\n\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "prompt_level_strict_acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "inst_level_strict_acc",
|
42 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "prompt_level_loose_acc",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"metric": "inst_level_loose_acc",
|
52 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
53 |
+
"higher_is_better": true
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"output_type": "generate_until",
|
57 |
+
"generation_kwargs": {
|
58 |
+
"until": [],
|
59 |
+
"do_sample": false,
|
60 |
+
"temperature": 0.0,
|
61 |
+
"max_gen_toks": 1280
|
62 |
+
},
|
63 |
+
"repeats": 1,
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 4.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"ar_ifeval": 4.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"ar_ifeval": 0
|
75 |
+
},
|
76 |
+
"higher_is_better": {
|
77 |
+
"ar_ifeval": {
|
78 |
+
"prompt_level_strict_acc": true,
|
79 |
+
"inst_level_strict_acc": true,
|
80 |
+
"prompt_level_loose_acc": true,
|
81 |
+
"inst_level_loose_acc": true
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"n-samples": {
|
85 |
+
"ar_ifeval": {
|
86 |
+
"original": 536,
|
87 |
+
"effective": 536
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"config": {
|
91 |
+
"model": "hf",
|
92 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
93 |
+
"model_num_parameters": 7000559616,
|
94 |
+
"model_dtype": "torch.bfloat16",
|
95 |
+
"model_revision": "main",
|
96 |
+
"model_sha": "",
|
97 |
+
"batch_size": 1,
|
98 |
+
"batch_sizes": [],
|
99 |
+
"device": null,
|
100 |
+
"use_cache": null,
|
101 |
+
"limit": null,
|
102 |
+
"bootstrap_iters": 100000,
|
103 |
+
"gen_kwargs": null,
|
104 |
+
"random_seed": 0,
|
105 |
+
"numpy_seed": 1234,
|
106 |
+
"torch_seed": 1234,
|
107 |
+
"fewshot_seed": 1234
|
108 |
+
},
|
109 |
+
"git_hash": "b955b2950",
|
110 |
+
"date": 1739618378.981141,
|
111 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
112 |
+
"transformers_version": "4.48.3",
|
113 |
+
"upper_git_hash": null,
|
114 |
+
"tokenizer_pad_token": [
|
115 |
+
"<unk>",
|
116 |
+
"0"
|
117 |
+
],
|
118 |
+
"tokenizer_eos_token": [
|
119 |
+
"</s>",
|
120 |
+
"2"
|
121 |
+
],
|
122 |
+
"tokenizer_bos_token": [
|
123 |
+
"<s>",
|
124 |
+
"1"
|
125 |
+
],
|
126 |
+
"eot_token_id": 2,
|
127 |
+
"max_length": 4096,
|
128 |
+
"task_hashes": {
|
129 |
+
"ar_ifeval": "d0db7903ef270d7dc54efe4e7713be0de9864fc3a36c901c6e5777a6a5f69aa9"
|
130 |
+
},
|
131 |
+
"model_source": "hf",
|
132 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
133 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
134 |
+
"system_instruction": null,
|
135 |
+
"system_instruction_sha": null,
|
136 |
+
"fewshot_as_multiturn": false,
|
137 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
138 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
139 |
+
"start_time": 1393068.333905473,
|
140 |
+
"end_time": 1397143.169266589,
|
141 |
+
"total_evaluation_time_seconds": "4074.8353611161"
|
142 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/araMath_v3_5_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araMath_v3": {
|
4 |
+
"alias": "araMath_v3",
|
5 |
+
"acc,none": 0.6677685950413224,
|
6 |
+
"acc_stderr,none": 0.019165266705090528,
|
7 |
+
"acc_norm,none": 0.6677685950413224,
|
8 |
+
"acc_norm_stderr,none": 0.019165266705090528
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araMath_v3": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araMath_v3": {
|
16 |
+
"task": "araMath_v3",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araMath_v3/araMath_v3.py",
|
21 |
+
"dataset_name": "araMath_v3",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "{{choices}}",
|
31 |
+
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"araMath_v3": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"araMath_v3": 5
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"araMath_v3": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"araMath_v3": {
|
70 |
+
"original": 605,
|
71 |
+
"effective": 605
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
77 |
+
"model_num_parameters": 7000559616,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739618269.6292942,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<unk>",
|
100 |
+
"0"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"</s>",
|
104 |
+
"2"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<s>",
|
108 |
+
"1"
|
109 |
+
],
|
110 |
+
"eot_token_id": 2,
|
111 |
+
"max_length": 4096,
|
112 |
+
"task_hashes": {
|
113 |
+
"araMath_v3": "e7f60b63c44ee90c76a61f37207fa1f812622b6662200911fcfd7dabe78ada66"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
117 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
122 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
123 |
+
"start_time": 1392959.193182268,
|
124 |
+
"end_time": 1393012.133225703,
|
125 |
+
"total_evaluation_time_seconds": "52.940043434966356"
|
126 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/araPro_0_shot.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araPro": {
|
4 |
+
"alias": "araPro",
|
5 |
+
"acc,none": 0.6970605878824235,
|
6 |
+
"acc_stderr,none": 0.006498724870364006,
|
7 |
+
"acc_norm,none": 0.6970605878824235,
|
8 |
+
"acc_norm_stderr,none": 0.006498724870364006
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araPro": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araPro": {
|
16 |
+
"task": "araPro",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araPro/araPro.py",
|
21 |
+
"dataset_name": "araPro",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "{{choices}}",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": true,
|
54 |
+
"doc_to_decontamination_query": "Question",
|
55 |
+
"metadata": {
|
56 |
+
"version": 2.0
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"versions": {
|
61 |
+
"araPro": 2.0
|
62 |
+
},
|
63 |
+
"n-shot": {
|
64 |
+
"araPro": 0
|
65 |
+
},
|
66 |
+
"higher_is_better": {
|
67 |
+
"araPro": {
|
68 |
+
"acc": true,
|
69 |
+
"acc_norm": true
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"n-samples": {
|
73 |
+
"araPro": {
|
74 |
+
"original": 5001,
|
75 |
+
"effective": 5001
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"config": {
|
79 |
+
"model": "hf",
|
80 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
81 |
+
"model_num_parameters": 7000559616,
|
82 |
+
"model_dtype": "torch.bfloat16",
|
83 |
+
"model_revision": "main",
|
84 |
+
"model_sha": "",
|
85 |
+
"batch_size": 1,
|
86 |
+
"batch_sizes": [],
|
87 |
+
"device": null,
|
88 |
+
"use_cache": null,
|
89 |
+
"limit": null,
|
90 |
+
"bootstrap_iters": 100000,
|
91 |
+
"gen_kwargs": null,
|
92 |
+
"random_seed": 0,
|
93 |
+
"numpy_seed": 1234,
|
94 |
+
"torch_seed": 1234,
|
95 |
+
"fewshot_seed": 1234
|
96 |
+
},
|
97 |
+
"git_hash": "b955b2950",
|
98 |
+
"date": 1739617164.0204737,
|
99 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
100 |
+
"transformers_version": "4.48.3",
|
101 |
+
"upper_git_hash": null,
|
102 |
+
"tokenizer_pad_token": [
|
103 |
+
"<unk>",
|
104 |
+
"0"
|
105 |
+
],
|
106 |
+
"tokenizer_eos_token": [
|
107 |
+
"</s>",
|
108 |
+
"2"
|
109 |
+
],
|
110 |
+
"tokenizer_bos_token": [
|
111 |
+
"<s>",
|
112 |
+
"1"
|
113 |
+
],
|
114 |
+
"eot_token_id": 2,
|
115 |
+
"max_length": 4096,
|
116 |
+
"task_hashes": {
|
117 |
+
"araPro": "01340c360a1565c46298c4c24dd3fdfe1ea614c6eef6e4d4f021f1da83da2584"
|
118 |
+
},
|
119 |
+
"model_source": "hf",
|
120 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
121 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
122 |
+
"system_instruction": null,
|
123 |
+
"system_instruction_sha": null,
|
124 |
+
"fewshot_as_multiturn": false,
|
125 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
126 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
127 |
+
"start_time": 1391853.516943726,
|
128 |
+
"end_time": 1392050.054185297,
|
129 |
+
"total_evaluation_time_seconds": "196.5372415711172"
|
130 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/arabicmmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/Allam-7b-instruct-preview/etec_v2_0_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"etec_v2": {
|
4 |
+
"alias": "etec_v2",
|
5 |
+
"acc,none": 0.6666666666666666,
|
6 |
+
"acc_stderr,none": 0.010854826817097195,
|
7 |
+
"acc_norm,none": 0.6666666666666666,
|
8 |
+
"acc_norm_stderr,none": 0.010854826817097195
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"etec_v2": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"etec_v2": {
|
16 |
+
"task": "etec_v2",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/etec_v2/etec.py",
|
21 |
+
"dataset_name": "etec_v2",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n print(doc[\"label\"])\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": int(doc[\"label\"])-1,\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 0,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"etec_v2": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"etec_v2": 0
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"etec_v2": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"etec_v2": {
|
70 |
+
"original": 1887,
|
71 |
+
"effective": 1887
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
77 |
+
"model_num_parameters": 7000559616,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739617421.4265695,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<unk>",
|
100 |
+
"0"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"</s>",
|
104 |
+
"2"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<s>",
|
108 |
+
"1"
|
109 |
+
],
|
110 |
+
"eot_token_id": 2,
|
111 |
+
"max_length": 4096,
|
112 |
+
"task_hashes": {
|
113 |
+
"etec_v2": "a0d87bf7eb82815b66ea544cb632aafb803526dee24b399f30fdc751be442b60"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
117 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
122 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
123 |
+
"start_time": 1392110.980523203,
|
124 |
+
"end_time": 1392198.883363127,
|
125 |
+
"total_evaluation_time_seconds": "87.90283992397599"
|
126 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/exams_ar_5_shot.json
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"exams_ar": {
|
4 |
+
"alias": "exams_ar",
|
5 |
+
"acc,none": 0.515828677839851,
|
6 |
+
"acc_stderr,none": 0.021585885942816244,
|
7 |
+
"acc_norm,none": 0.515828677839851,
|
8 |
+
"acc_norm_stderr,none": 0.021585885942816244
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"exams_ar": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"exams_ar": {
|
16 |
+
"task": "exams_ar",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/exams_ar",
|
21 |
+
"dataset_name": "exams_ar",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"test_split": "test",
|
26 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n\n def _process_docs(doc):\n def format_example(doc, keys):\n \"\"\"\n <prompt>\n \u0633\u0624\u0627\u0644:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n \u0627\u062c\u0627\u0628\u0629:\n \"\"\"\n \n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n def _format_subject(subject):\n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n\n keys = [\"A\", \"B\", \"C\", \"D\"]\n \n subject = doc['id'].split(\"-\")[0]\n description = f\"\ufed2\ufef4\ufee3\ufe8d \ufef2\ufee0\ufef3 \ufe84\ufeb4\ufe8c\ufedf\ufe93 \ufe8d\ufefc\ufea8\ufe98\ufef3\ufe8d\ufead \ufee2\ufee7 \ufee2\ufe98\ufecb\ufea9\ufea9 (\ufee2\ufecb \ufe8d\ufefa\ufe9f\ufe8e\ufe91\ufe8e\ufe97) \ufea1\ufeee\ufedf {_format_subject(subject)} \\n\" #\ufee2\ufee7 \ufed2\ufec0\ufee0\ufedb \ufe8e\ufea8\ufe97\ufead \ufe88\ufe9f\ufe8e\ufe91\ufe93 \ufeed\ufe8e\ufea3\ufea9\ufe93 \ufee2\ufee7 \ufe90\ufef4\ufee7 'A\u060c B\u060c C\u060c D' \ufea9\ufeee\ufee7 \ufeb5\ufeae\ufea3\\n\"\n\n out_doc = {\n \"idx\": doc[\"idx\"],\n \"id\": doc[\"id\"],\n 'dsecription': description,\n \"query\": format_example(doc, keys), # \"Question: \" + doc[\"question\"]['stem'] + \"\\nAnswer:\",\n \"choices\": keys,\n \"gold\": [\"A\", \"B\", \"C\", \"D\"].index(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_docs)\n",
|
27 |
+
"doc_to_text": "query",
|
28 |
+
"doc_to_target": "gold",
|
29 |
+
"doc_to_choice": "choices",
|
30 |
+
"description": "description",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 5,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "acc_norm",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "multiple_choice",
|
47 |
+
"repeats": 1,
|
48 |
+
"should_decontaminate": true,
|
49 |
+
"doc_to_decontamination_query": "query",
|
50 |
+
"metadata": {
|
51 |
+
"version": 0.0
|
52 |
+
}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"versions": {
|
56 |
+
"exams_ar": 0.0
|
57 |
+
},
|
58 |
+
"n-shot": {
|
59 |
+
"exams_ar": 5
|
60 |
+
},
|
61 |
+
"higher_is_better": {
|
62 |
+
"exams_ar": {
|
63 |
+
"acc": true,
|
64 |
+
"acc_norm": true
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"n-samples": {
|
68 |
+
"exams_ar": {
|
69 |
+
"original": 537,
|
70 |
+
"effective": 537
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"config": {
|
74 |
+
"model": "vllm",
|
75 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
76 |
+
"batch_size": 1,
|
77 |
+
"batch_sizes": [],
|
78 |
+
"device": null,
|
79 |
+
"use_cache": null,
|
80 |
+
"limit": null,
|
81 |
+
"bootstrap_iters": 100000,
|
82 |
+
"gen_kwargs": null,
|
83 |
+
"random_seed": 0,
|
84 |
+
"numpy_seed": 1234,
|
85 |
+
"torch_seed": 1234,
|
86 |
+
"fewshot_seed": 1234
|
87 |
+
},
|
88 |
+
"git_hash": "8e1bd48d",
|
89 |
+
"date": 1735662207.0830526,
|
90 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
91 |
+
"transformers_version": "4.47.1",
|
92 |
+
"upper_git_hash": null,
|
93 |
+
"tokenizer_pad_token": [
|
94 |
+
"<unk>",
|
95 |
+
"0"
|
96 |
+
],
|
97 |
+
"tokenizer_eos_token": [
|
98 |
+
"</s>",
|
99 |
+
"2"
|
100 |
+
],
|
101 |
+
"tokenizer_bos_token": [
|
102 |
+
"<s>",
|
103 |
+
"1"
|
104 |
+
],
|
105 |
+
"eot_token_id": 2,
|
106 |
+
"max_length": 4096,
|
107 |
+
"task_hashes": {
|
108 |
+
"exams_ar": "b1561abd56354d570ac16bf64163b0ee8dc6c507234b05f678576b09c26c644a"
|
109 |
+
},
|
110 |
+
"model_source": "vllm",
|
111 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
112 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
113 |
+
"system_instruction": null,
|
114 |
+
"system_instruction_sha": null,
|
115 |
+
"fewshot_as_multiturn": false,
|
116 |
+
"chat_template": null,
|
117 |
+
"chat_template_sha": null,
|
118 |
+
"start_time": 2867.397536365,
|
119 |
+
"end_time": 2948.510496752,
|
120 |
+
"total_evaluation_time_seconds": "81.11296038699993"
|
121 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/gat_0_shot.json
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gat": {
|
4 |
+
"acc,none": 0.4452527279568544,
|
5 |
+
"acc_stderr,none": 0.0038711388833064567,
|
6 |
+
"alias": "gat"
|
7 |
+
},
|
8 |
+
"gat_algebra": {
|
9 |
+
"alias": " - gat_algebra",
|
10 |
+
"acc,none": 0.40667903525046384,
|
11 |
+
"acc_stderr,none": 0.009463939247454995
|
12 |
+
},
|
13 |
+
"gat_analogy": {
|
14 |
+
"alias": " - gat_analogy",
|
15 |
+
"acc,none": 0.35919854280510016,
|
16 |
+
"acc_stderr,none": 0.009158766245747282
|
17 |
+
},
|
18 |
+
"gat_arithmetic": {
|
19 |
+
"alias": " - gat_arithmetic",
|
20 |
+
"acc,none": 0.40154582259845417,
|
21 |
+
"acc_stderr,none": 0.009406284814832203
|
22 |
+
},
|
23 |
+
"gat_association": {
|
24 |
+
"alias": " - gat_association",
|
25 |
+
"acc,none": 0.5464114832535886,
|
26 |
+
"acc_stderr,none": 0.015407801869520031
|
27 |
+
},
|
28 |
+
"gat_comparisons": {
|
29 |
+
"alias": " - gat_comparisons",
|
30 |
+
"acc,none": 0.34508196721311474,
|
31 |
+
"acc_stderr,none": 0.013616100682624904
|
32 |
+
},
|
33 |
+
"gat_completion": {
|
34 |
+
"alias": " - gat_completion",
|
35 |
+
"acc,none": 0.6057851239669422,
|
36 |
+
"acc_stderr,none": 0.014054411207805699
|
37 |
+
},
|
38 |
+
"gat_contextual": {
|
39 |
+
"alias": " - gat_contextual",
|
40 |
+
"acc,none": 0.3941717791411043,
|
41 |
+
"acc_stderr,none": 0.013537713096332765
|
42 |
+
},
|
43 |
+
"gat_geometry": {
|
44 |
+
"alias": " - gat_geometry",
|
45 |
+
"acc,none": 0.473972602739726,
|
46 |
+
"acc_stderr,none": 0.026171590093068537
|
47 |
+
},
|
48 |
+
"gat_reading": {
|
49 |
+
"alias": " - gat_reading",
|
50 |
+
"acc,none": 0.5727788279773157,
|
51 |
+
"acc_stderr,none": 0.009620311542503682
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"groups": {
|
55 |
+
"gat": {
|
56 |
+
"acc,none": 0.4452527279568544,
|
57 |
+
"acc_stderr,none": 0.0038711388833064567,
|
58 |
+
"alias": "gat"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"group_subtasks": {
|
62 |
+
"gat": [
|
63 |
+
"gat_analogy",
|
64 |
+
"gat_association",
|
65 |
+
"gat_completion",
|
66 |
+
"gat_reading",
|
67 |
+
"gat_algebra",
|
68 |
+
"gat_arithmetic",
|
69 |
+
"gat_comparisons",
|
70 |
+
"gat_contextual",
|
71 |
+
"gat_geometry"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"configs": {
|
75 |
+
"gat_algebra": {
|
76 |
+
"task": "gat_algebra",
|
77 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
78 |
+
"dataset_name": "algebra",
|
79 |
+
"dataset_kwargs": {
|
80 |
+
"trust_remote_code": true
|
81 |
+
},
|
82 |
+
"test_split": "test",
|
83 |
+
"fewshot_split": "validation",
|
84 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
85 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
86 |
+
"doc_to_target": "{{label}}",
|
87 |
+
"doc_to_choice": [
|
88 |
+
"\u0623",
|
89 |
+
"\u0628",
|
90 |
+
"\u062c",
|
91 |
+
"\u062f"
|
92 |
+
],
|
93 |
+
"description": "",
|
94 |
+
"target_delimiter": " ",
|
95 |
+
"fewshot_delimiter": "\n\n",
|
96 |
+
"num_fewshot": 0,
|
97 |
+
"metric_list": [
|
98 |
+
{
|
99 |
+
"metric": "acc",
|
100 |
+
"aggregation": "mean",
|
101 |
+
"higher_is_better": true
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"output_type": "multiple_choice",
|
105 |
+
"repeats": 1,
|
106 |
+
"should_decontaminate": false,
|
107 |
+
"metadata": {
|
108 |
+
"version": 0.0
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"gat_analogy": {
|
112 |
+
"task": "gat_analogy",
|
113 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
114 |
+
"dataset_name": "analogy",
|
115 |
+
"dataset_kwargs": {
|
116 |
+
"trust_remote_code": true
|
117 |
+
},
|
118 |
+
"test_split": "test",
|
119 |
+
"fewshot_split": "validation",
|
120 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
121 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
122 |
+
"doc_to_target": "{{label}}",
|
123 |
+
"doc_to_choice": [
|
124 |
+
"\u0623",
|
125 |
+
"\u0628",
|
126 |
+
"\u062c",
|
127 |
+
"\u062f"
|
128 |
+
],
|
129 |
+
"description": "",
|
130 |
+
"target_delimiter": " ",
|
131 |
+
"fewshot_delimiter": "\n\n",
|
132 |
+
"num_fewshot": 0,
|
133 |
+
"metric_list": [
|
134 |
+
{
|
135 |
+
"metric": "acc",
|
136 |
+
"aggregation": "mean",
|
137 |
+
"higher_is_better": true
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"output_type": "multiple_choice",
|
141 |
+
"repeats": 1,
|
142 |
+
"should_decontaminate": false,
|
143 |
+
"metadata": {
|
144 |
+
"version": 0.0
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"gat_arithmetic": {
|
148 |
+
"task": "gat_arithmetic",
|
149 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
150 |
+
"dataset_name": "arithmetic",
|
151 |
+
"dataset_kwargs": {
|
152 |
+
"trust_remote_code": true
|
153 |
+
},
|
154 |
+
"test_split": "test",
|
155 |
+
"fewshot_split": "validation",
|
156 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
157 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
158 |
+
"doc_to_target": "{{label}}",
|
159 |
+
"doc_to_choice": [
|
160 |
+
"\u0623",
|
161 |
+
"\u0628",
|
162 |
+
"\u062c",
|
163 |
+
"\u062f"
|
164 |
+
],
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"num_fewshot": 0,
|
169 |
+
"metric_list": [
|
170 |
+
{
|
171 |
+
"metric": "acc",
|
172 |
+
"aggregation": "mean",
|
173 |
+
"higher_is_better": true
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"output_type": "multiple_choice",
|
177 |
+
"repeats": 1,
|
178 |
+
"should_decontaminate": false,
|
179 |
+
"metadata": {
|
180 |
+
"version": 0.0
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"gat_association": {
|
184 |
+
"task": "gat_association",
|
185 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
186 |
+
"dataset_name": "association",
|
187 |
+
"dataset_kwargs": {
|
188 |
+
"trust_remote_code": true
|
189 |
+
},
|
190 |
+
"test_split": "test",
|
191 |
+
"fewshot_split": "validation",
|
192 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
193 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
194 |
+
"doc_to_target": "{{label}}",
|
195 |
+
"doc_to_choice": [
|
196 |
+
"\u0623",
|
197 |
+
"\u0628",
|
198 |
+
"\u062c",
|
199 |
+
"\u062f"
|
200 |
+
],
|
201 |
+
"description": "",
|
202 |
+
"target_delimiter": " ",
|
203 |
+
"fewshot_delimiter": "\n\n",
|
204 |
+
"num_fewshot": 0,
|
205 |
+
"metric_list": [
|
206 |
+
{
|
207 |
+
"metric": "acc",
|
208 |
+
"aggregation": "mean",
|
209 |
+
"higher_is_better": true
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"output_type": "multiple_choice",
|
213 |
+
"repeats": 1,
|
214 |
+
"should_decontaminate": false,
|
215 |
+
"metadata": {
|
216 |
+
"version": 0.0
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"gat_comparisons": {
|
220 |
+
"task": "gat_comparisons",
|
221 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
222 |
+
"dataset_name": "comparisons",
|
223 |
+
"dataset_kwargs": {
|
224 |
+
"trust_remote_code": true
|
225 |
+
},
|
226 |
+
"test_split": "test",
|
227 |
+
"fewshot_split": "validation",
|
228 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
229 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
230 |
+
"doc_to_target": "{{label}}",
|
231 |
+
"doc_to_choice": [
|
232 |
+
"\u0623",
|
233 |
+
"\u0628",
|
234 |
+
"\u062c",
|
235 |
+
"\u062f"
|
236 |
+
],
|
237 |
+
"description": "",
|
238 |
+
"target_delimiter": " ",
|
239 |
+
"fewshot_delimiter": "\n\n",
|
240 |
+
"num_fewshot": 0,
|
241 |
+
"metric_list": [
|
242 |
+
{
|
243 |
+
"metric": "acc",
|
244 |
+
"aggregation": "mean",
|
245 |
+
"higher_is_better": true
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"output_type": "multiple_choice",
|
249 |
+
"repeats": 1,
|
250 |
+
"should_decontaminate": false,
|
251 |
+
"metadata": {
|
252 |
+
"version": 0.0
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"gat_completion": {
|
256 |
+
"task": "gat_completion",
|
257 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
258 |
+
"dataset_name": "completion",
|
259 |
+
"dataset_kwargs": {
|
260 |
+
"trust_remote_code": true
|
261 |
+
},
|
262 |
+
"test_split": "test",
|
263 |
+
"fewshot_split": "validation",
|
264 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
265 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
266 |
+
"doc_to_target": "{{label}}",
|
267 |
+
"doc_to_choice": [
|
268 |
+
"\u0623",
|
269 |
+
"\u0628",
|
270 |
+
"\u062c",
|
271 |
+
"\u062f"
|
272 |
+
],
|
273 |
+
"description": "",
|
274 |
+
"target_delimiter": " ",
|
275 |
+
"fewshot_delimiter": "\n\n",
|
276 |
+
"num_fewshot": 0,
|
277 |
+
"metric_list": [
|
278 |
+
{
|
279 |
+
"metric": "acc",
|
280 |
+
"aggregation": "mean",
|
281 |
+
"higher_is_better": true
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"output_type": "multiple_choice",
|
285 |
+
"repeats": 1,
|
286 |
+
"should_decontaminate": false,
|
287 |
+
"metadata": {
|
288 |
+
"version": 0.0
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"gat_contextual": {
|
292 |
+
"task": "gat_contextual",
|
293 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
294 |
+
"dataset_name": "contextual",
|
295 |
+
"dataset_kwargs": {
|
296 |
+
"trust_remote_code": true
|
297 |
+
},
|
298 |
+
"test_split": "test",
|
299 |
+
"fewshot_split": "validation",
|
300 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
301 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
302 |
+
"doc_to_target": "{{label}}",
|
303 |
+
"doc_to_choice": [
|
304 |
+
"\u0623",
|
305 |
+
"\u0628",
|
306 |
+
"\u062c",
|
307 |
+
"\u062f"
|
308 |
+
],
|
309 |
+
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
|
310 |
+
"target_delimiter": " ",
|
311 |
+
"fewshot_delimiter": "\n\n",
|
312 |
+
"num_fewshot": 0,
|
313 |
+
"metric_list": [
|
314 |
+
{
|
315 |
+
"metric": "acc",
|
316 |
+
"aggregation": "mean",
|
317 |
+
"higher_is_better": true
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"output_type": "multiple_choice",
|
321 |
+
"repeats": 1,
|
322 |
+
"should_decontaminate": false,
|
323 |
+
"metadata": {
|
324 |
+
"version": 0.0
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"gat_geometry": {
|
328 |
+
"task": "gat_geometry",
|
329 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
330 |
+
"dataset_name": "geometry",
|
331 |
+
"dataset_kwargs": {
|
332 |
+
"trust_remote_code": true
|
333 |
+
},
|
334 |
+
"test_split": "test",
|
335 |
+
"fewshot_split": "validation",
|
336 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
337 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
338 |
+
"doc_to_target": "{{label}}",
|
339 |
+
"doc_to_choice": [
|
340 |
+
"\u0623",
|
341 |
+
"\u0628",
|
342 |
+
"\u062c",
|
343 |
+
"\u062f"
|
344 |
+
],
|
345 |
+
"description": "",
|
346 |
+
"target_delimiter": " ",
|
347 |
+
"fewshot_delimiter": "\n\n",
|
348 |
+
"num_fewshot": 0,
|
349 |
+
"metric_list": [
|
350 |
+
{
|
351 |
+
"metric": "acc",
|
352 |
+
"aggregation": "mean",
|
353 |
+
"higher_is_better": true
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"output_type": "multiple_choice",
|
357 |
+
"repeats": 1,
|
358 |
+
"should_decontaminate": false,
|
359 |
+
"metadata": {
|
360 |
+
"version": 0.0
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"gat_reading": {
|
364 |
+
"task": "gat_reading",
|
365 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
366 |
+
"dataset_name": "reading",
|
367 |
+
"dataset_kwargs": {
|
368 |
+
"trust_remote_code": true
|
369 |
+
},
|
370 |
+
"test_split": "test",
|
371 |
+
"fewshot_split": "validation",
|
372 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
373 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
374 |
+
"doc_to_target": "{{label}}",
|
375 |
+
"doc_to_choice": [
|
376 |
+
"\u0623",
|
377 |
+
"\u0628",
|
378 |
+
"\u062c",
|
379 |
+
"\u062f"
|
380 |
+
],
|
381 |
+
"description": "",
|
382 |
+
"target_delimiter": " ",
|
383 |
+
"fewshot_delimiter": "\n\n",
|
384 |
+
"num_fewshot": 0,
|
385 |
+
"metric_list": [
|
386 |
+
{
|
387 |
+
"metric": "acc",
|
388 |
+
"aggregation": "mean",
|
389 |
+
"higher_is_better": true
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"output_type": "multiple_choice",
|
393 |
+
"repeats": 1,
|
394 |
+
"should_decontaminate": false,
|
395 |
+
"metadata": {
|
396 |
+
"version": 0.0
|
397 |
+
}
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"versions": {
|
401 |
+
"gat": 0,
|
402 |
+
"gat_algebra": 0.0,
|
403 |
+
"gat_analogy": 0.0,
|
404 |
+
"gat_arithmetic": 0.0,
|
405 |
+
"gat_association": 0.0,
|
406 |
+
"gat_comparisons": 0.0,
|
407 |
+
"gat_completion": 0.0,
|
408 |
+
"gat_contextual": 0.0,
|
409 |
+
"gat_geometry": 0.0,
|
410 |
+
"gat_reading": 0.0
|
411 |
+
},
|
412 |
+
"n-shot": {
|
413 |
+
"gat_algebra": 0,
|
414 |
+
"gat_analogy": 0,
|
415 |
+
"gat_arithmetic": 0,
|
416 |
+
"gat_association": 0,
|
417 |
+
"gat_comparisons": 0,
|
418 |
+
"gat_completion": 0,
|
419 |
+
"gat_contextual": 0,
|
420 |
+
"gat_geometry": 0,
|
421 |
+
"gat_reading": 0
|
422 |
+
},
|
423 |
+
"higher_is_better": {
|
424 |
+
"gat": {
|
425 |
+
"acc": true
|
426 |
+
},
|
427 |
+
"gat_algebra": {
|
428 |
+
"acc": true
|
429 |
+
},
|
430 |
+
"gat_analogy": {
|
431 |
+
"acc": true
|
432 |
+
},
|
433 |
+
"gat_arithmetic": {
|
434 |
+
"acc": true
|
435 |
+
},
|
436 |
+
"gat_association": {
|
437 |
+
"acc": true
|
438 |
+
},
|
439 |
+
"gat_comparisons": {
|
440 |
+
"acc": true
|
441 |
+
},
|
442 |
+
"gat_completion": {
|
443 |
+
"acc": true
|
444 |
+
},
|
445 |
+
"gat_contextual": {
|
446 |
+
"acc": true
|
447 |
+
},
|
448 |
+
"gat_geometry": {
|
449 |
+
"acc": true
|
450 |
+
},
|
451 |
+
"gat_reading": {
|
452 |
+
"acc": true
|
453 |
+
}
|
454 |
+
},
|
455 |
+
"n-samples": {
|
456 |
+
"gat_analogy": {
|
457 |
+
"original": 2745,
|
458 |
+
"effective": 2745
|
459 |
+
},
|
460 |
+
"gat_association": {
|
461 |
+
"original": 1045,
|
462 |
+
"effective": 1045
|
463 |
+
},
|
464 |
+
"gat_completion": {
|
465 |
+
"original": 1210,
|
466 |
+
"effective": 1210
|
467 |
+
},
|
468 |
+
"gat_reading": {
|
469 |
+
"original": 2645,
|
470 |
+
"effective": 2645
|
471 |
+
},
|
472 |
+
"gat_algebra": {
|
473 |
+
"original": 2695,
|
474 |
+
"effective": 2695
|
475 |
+
},
|
476 |
+
"gat_arithmetic": {
|
477 |
+
"original": 2717,
|
478 |
+
"effective": 2717
|
479 |
+
},
|
480 |
+
"gat_comparisons": {
|
481 |
+
"original": 1220,
|
482 |
+
"effective": 1220
|
483 |
+
},
|
484 |
+
"gat_contextual": {
|
485 |
+
"original": 1304,
|
486 |
+
"effective": 1304
|
487 |
+
},
|
488 |
+
"gat_geometry": {
|
489 |
+
"original": 365,
|
490 |
+
"effective": 365
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"config": {
|
494 |
+
"model": "vllm",
|
495 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
496 |
+
"batch_size": 1,
|
497 |
+
"batch_sizes": [],
|
498 |
+
"device": null,
|
499 |
+
"use_cache": null,
|
500 |
+
"limit": null,
|
501 |
+
"bootstrap_iters": 100000,
|
502 |
+
"gen_kwargs": null,
|
503 |
+
"random_seed": 0,
|
504 |
+
"numpy_seed": 1234,
|
505 |
+
"torch_seed": 1234,
|
506 |
+
"fewshot_seed": 1234
|
507 |
+
},
|
508 |
+
"git_hash": "8e1bd48d",
|
509 |
+
"date": 1735664096.2650902,
|
510 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
511 |
+
"transformers_version": "4.47.1",
|
512 |
+
"upper_git_hash": null,
|
513 |
+
"tokenizer_pad_token": [
|
514 |
+
"<unk>",
|
515 |
+
"0"
|
516 |
+
],
|
517 |
+
"tokenizer_eos_token": [
|
518 |
+
"</s>",
|
519 |
+
"2"
|
520 |
+
],
|
521 |
+
"tokenizer_bos_token": [
|
522 |
+
"<s>",
|
523 |
+
"1"
|
524 |
+
],
|
525 |
+
"eot_token_id": 2,
|
526 |
+
"max_length": 4096,
|
527 |
+
"task_hashes": {
|
528 |
+
"gat_analogy": "ede28dec097bfebe8a85a19fa27d001696858276df66254bdb70fc63231f1a83",
|
529 |
+
"gat_association": "5d82550d46c4f3cabf370185a8a23cc2eb5b08f1f0c5e210a8a712562a44bd08",
|
530 |
+
"gat_completion": "fc3c19dd7f1896696fec1bffc21182804c9b2f1fb8d8c882428a6bb4bb61e370",
|
531 |
+
"gat_reading": "93053b187a750d2e87f5488f2d0fda944f3da9195bb04d1c4dee9c4b56fa626a",
|
532 |
+
"gat_algebra": "77832c595eaaf156775c3dbb27da0915ef600ebf46a7113ae32a202b0359e8a6",
|
533 |
+
"gat_arithmetic": "6a498f75f5cc0ffd1b30f7a6293ba80d08f2a8876d5558d8e934bf57355ff0cc",
|
534 |
+
"gat_comparisons": "acb80c0ed8dd07e916a471189aef3a546efc289824b2cc50a32c11dc4c97c9c1",
|
535 |
+
"gat_contextual": "de063ed3b94011d74ee24a6532122c9d344fc15e42800db44f0849995a0bc37a",
|
536 |
+
"gat_geometry": "3e482885559a4404ee9e97556edc6e49959770a499f4ae2c58f18ad85b91a363"
|
537 |
+
},
|
538 |
+
"model_source": "vllm",
|
539 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
540 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
541 |
+
"system_instruction": null,
|
542 |
+
"system_instruction_sha": null,
|
543 |
+
"fewshot_as_multiturn": false,
|
544 |
+
"chat_template": null,
|
545 |
+
"chat_template_sha": null,
|
546 |
+
"start_time": 4756.376698655,
|
547 |
+
"end_time": 5124.76942052,
|
548 |
+
"total_evaluation_time_seconds": "368.39272186499966"
|
549 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/moe_ien_mcq_0_shot.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_mcq": {
|
4 |
+
"alias": "moe_ien_mcq",
|
5 |
+
"acc,none": 0.9177177177177177,
|
6 |
+
"acc_stderr,none": 0.002749455634736978,
|
7 |
+
"acc_norm,none": 0.9177177177177177,
|
8 |
+
"acc_norm_stderr,none": 0.002749455634736978
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_mcq": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_mcq": {
|
16 |
+
"task": "moe_ien_mcq",
|
17 |
+
"dataset_path": "lm_eval/tasks/moe_ien_mcq/ien_moe_mcq.py",
|
18 |
+
"dataset_name": "moe_ien_mcq",
|
19 |
+
"dataset_kwargs": {
|
20 |
+
"trust_remote_code": true
|
21 |
+
},
|
22 |
+
"validation_split": "validation",
|
23 |
+
"test_split": "test",
|
24 |
+
"fewshot_split": "validation",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.split(\". \", 1)[1] if \". \" in choice else choice\n\n def format_example(doc, keys):\n question = doc[\"Question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"Choices\"])]\n \n )\n prompt = f\"\\n\\n\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"][0:len(doc[\"Choices\"])]\n out_doc = {\n \"Query\": format_example(doc, keys), \n \"Choices\": keys,\n \"gold\": int(doc[\"Answer\"])-1, ## \n } \n return out_doc\n \n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "Query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "{{Choices}}",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627\u202f\u064a\u0644\u064a\u202f\u0623\u0633\u0626\u0644\u0629\u202f\u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631\u202f\u0645\u0646\u202f\u0645\u062a\u0639\u062f\u062f\u202f(\u0645\u0639\u202f\u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a)\u202f\u0641\u064a\u202f{{Subject}}",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"fewshot_config": {
|
33 |
+
"sampler": "balanced_cat"
|
34 |
+
},
|
35 |
+
"num_fewshot": 0,
|
36 |
+
"metric_list": [
|
37 |
+
{
|
38 |
+
"metric": "acc",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"metric": "acc_norm",
|
44 |
+
"aggregation": "mean",
|
45 |
+
"higher_is_better": true
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"output_type": "multiple_choice",
|
49 |
+
"repeats": 1,
|
50 |
+
"should_decontaminate": true,
|
51 |
+
"doc_to_decontamination_query": "Query",
|
52 |
+
"metadata": {
|
53 |
+
"version": 0.0
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"versions": {
|
58 |
+
"moe_ien_mcq": 0.0
|
59 |
+
},
|
60 |
+
"n-shot": {
|
61 |
+
"moe_ien_mcq": 0
|
62 |
+
},
|
63 |
+
"higher_is_better": {
|
64 |
+
"moe_ien_mcq": {
|
65 |
+
"acc": true,
|
66 |
+
"acc_norm": true
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"n-samples": {
|
70 |
+
"moe_ien_mcq": {
|
71 |
+
"original": 9990,
|
72 |
+
"effective": 9990
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"config": {
|
76 |
+
"model": "hf",
|
77 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
78 |
+
"model_num_parameters": 7000559616,
|
79 |
+
"model_dtype": "torch.bfloat16",
|
80 |
+
"model_revision": "main",
|
81 |
+
"model_sha": "",
|
82 |
+
"batch_size": 1,
|
83 |
+
"batch_sizes": [],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "b955b2950",
|
95 |
+
"date": 1739617571.8184838,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.3",
|
98 |
+
"upper_git_hash": null,
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<unk>",
|
101 |
+
"0"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"</s>",
|
105 |
+
"2"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
"<s>",
|
109 |
+
"1"
|
110 |
+
],
|
111 |
+
"eot_token_id": 2,
|
112 |
+
"max_length": 4096,
|
113 |
+
"task_hashes": {
|
114 |
+
"moe_ien_mcq": "504533b140426f12c89d975ef421328fc89d69af8719c420a1bf897ed4724191"
|
115 |
+
},
|
116 |
+
"model_source": "hf",
|
117 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
118 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
119 |
+
"system_instruction": null,
|
120 |
+
"system_instruction_sha": null,
|
121 |
+
"fewshot_as_multiturn": false,
|
122 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
123 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
124 |
+
"start_time": 1392261.292633723,
|
125 |
+
"end_time": 1392626.942167409,
|
126 |
+
"total_evaluation_time_seconds": "365.64953368599527"
|
127 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/moe_ien_tf_0_shot.json
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_tf": {
|
4 |
+
"alias": "moe_ien_tf",
|
5 |
+
"acc,none": 0.8294693456980937,
|
6 |
+
"acc_stderr,none": 0.004929073554117403,
|
7 |
+
"acc_norm,none": 0.8294693456980937,
|
8 |
+
"acc_norm_stderr,none": 0.004929073554117403
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_tf": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_tf": {
|
16 |
+
"task": "moe_ien_tf",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/moe_ien_tf/moe_ien_tf.py",
|
21 |
+
"dataset_name": "moe_ien_tf",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n keys=[\"\u0635\u062d\u064a\u062d\u0629\",\n \"\u062e\u0627\u0637\u0626\u0629\"\n ]\n #keys =[\"\u0635\u0648\u0627\u0628\",\n # \"\u062e\u0637\u0623\"]\n target_key = int(doc[\"Answer\"])-1\n\n out_doc = {\n \"query\": \"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" +doc[\"Question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\", \n \"choices\": keys,\n \"gold\": target_key,\n }\n return out_doc\n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "choices",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{Subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d\u064a\u062d\u0629' \u0623\u0648 '\u062e\u0627\u0637\u0626\u0629' \u062f\u0648\u0646 \u0634\u0631\u062d ",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": false,
|
54 |
+
"metadata": {
|
55 |
+
"version": 2.0
|
56 |
+
}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"versions": {
|
60 |
+
"moe_ien_tf": 2.0
|
61 |
+
},
|
62 |
+
"n-shot": {
|
63 |
+
"moe_ien_tf": 0
|
64 |
+
},
|
65 |
+
"higher_is_better": {
|
66 |
+
"moe_ien_tf": {
|
67 |
+
"acc": true,
|
68 |
+
"acc_norm": true
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"n-samples": {
|
72 |
+
"moe_ien_tf": {
|
73 |
+
"original": 5823,
|
74 |
+
"effective": 5823
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"config": {
|
78 |
+
"model": "hf",
|
79 |
+
"model_args": "pretrained=/tmp/7b-alpha-v1.27.2.25,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
80 |
+
"model_num_parameters": 7000559616,
|
81 |
+
"model_dtype": "torch.bfloat16",
|
82 |
+
"model_revision": "main",
|
83 |
+
"model_sha": "",
|
84 |
+
"batch_size": 1,
|
85 |
+
"batch_sizes": [],
|
86 |
+
"device": null,
|
87 |
+
"use_cache": null,
|
88 |
+
"limit": null,
|
89 |
+
"bootstrap_iters": 100000,
|
90 |
+
"gen_kwargs": null,
|
91 |
+
"random_seed": 0,
|
92 |
+
"numpy_seed": 1234,
|
93 |
+
"torch_seed": 1234,
|
94 |
+
"fewshot_seed": 1234
|
95 |
+
},
|
96 |
+
"git_hash": "b955b2950",
|
97 |
+
"date": 1739617995.3462336,
|
98 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
99 |
+
"transformers_version": "4.48.3",
|
100 |
+
"upper_git_hash": null,
|
101 |
+
"tokenizer_pad_token": [
|
102 |
+
"<unk>",
|
103 |
+
"0"
|
104 |
+
],
|
105 |
+
"tokenizer_eos_token": [
|
106 |
+
"</s>",
|
107 |
+
"2"
|
108 |
+
],
|
109 |
+
"tokenizer_bos_token": [
|
110 |
+
"<s>",
|
111 |
+
"1"
|
112 |
+
],
|
113 |
+
"eot_token_id": 2,
|
114 |
+
"max_length": 4096,
|
115 |
+
"task_hashes": {
|
116 |
+
"moe_ien_tf": "8701a646f6ea8b9bb96c028f817fbeabfb9031580f5054368b43d14d4a5a1270"
|
117 |
+
},
|
118 |
+
"model_source": "hf",
|
119 |
+
"model_name": "/tmp/7b-alpha-v1.27.2.25",
|
120 |
+
"model_name_sanitized": "__tmp__7b-alpha-v1.27.2.25",
|
121 |
+
"system_instruction": null,
|
122 |
+
"system_instruction_sha": null,
|
123 |
+
"fewshot_as_multiturn": false,
|
124 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
125 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
126 |
+
"start_time": 1392684.818305694,
|
127 |
+
"end_time": 1392900.218863064,
|
128 |
+
"total_evaluation_time_seconds": "215.40055736992508"
|
129 |
+
}
|
evaluations/ar/Allam-7b-instruct-preview/openaimmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/Falcon3-7B-Instruct/acva_5_shot.json
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"acva": {
|
4 |
+
"alias": "acva",
|
5 |
+
"acc,none": 0.6045924225028703,
|
6 |
+
"acc_stderr,none": 0.00523925695392083,
|
7 |
+
"acc_norm,none": 0.5897818599311137,
|
8 |
+
"acc_norm_stderr,none": 0.005270708411925859
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"acva": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"acva": {
|
16 |
+
"task": "acva",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"test_split": "test",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "choices",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"num_fewshot": 5,
|
33 |
+
"metric_list": [
|
34 |
+
{
|
35 |
+
"metric": "acc",
|
36 |
+
"aggregation": "mean",
|
37 |
+
"higher_is_better": true
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"metric": "acc_norm",
|
41 |
+
"aggregation": "mean",
|
42 |
+
"higher_is_better": true
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"output_type": "multiple_choice",
|
46 |
+
"repeats": 1,
|
47 |
+
"should_decontaminate": false,
|
48 |
+
"metadata": {
|
49 |
+
"version": 0.0
|
50 |
+
}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"versions": {
|
54 |
+
"acva": 0.0
|
55 |
+
},
|
56 |
+
"n-shot": {
|
57 |
+
"acva": 5
|
58 |
+
},
|
59 |
+
"higher_is_better": {
|
60 |
+
"acva": {
|
61 |
+
"acc": true,
|
62 |
+
"acc_norm": true
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"n-samples": {
|
66 |
+
"acva": {
|
67 |
+
"original": 8710,
|
68 |
+
"effective": 8710
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"config": {
|
72 |
+
"model": "hf",
|
73 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
74 |
+
"model_num_parameters": 7455550464,
|
75 |
+
"model_dtype": "torch.bfloat16",
|
76 |
+
"model_revision": "main",
|
77 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
78 |
+
"batch_size": 1,
|
79 |
+
"batch_sizes": [],
|
80 |
+
"device": null,
|
81 |
+
"use_cache": null,
|
82 |
+
"limit": null,
|
83 |
+
"bootstrap_iters": 100000,
|
84 |
+
"gen_kwargs": null,
|
85 |
+
"random_seed": 0,
|
86 |
+
"numpy_seed": 1234,
|
87 |
+
"torch_seed": 1234,
|
88 |
+
"fewshot_seed": 1234
|
89 |
+
},
|
90 |
+
"git_hash": "5e10e017",
|
91 |
+
"date": 1736889821.9957027,
|
92 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
93 |
+
"transformers_version": "4.48.0",
|
94 |
+
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
|
95 |
+
"tokenizer_pad_token": [
|
96 |
+
"<|pad|>",
|
97 |
+
"2023"
|
98 |
+
],
|
99 |
+
"tokenizer_eos_token": [
|
100 |
+
"<|endoftext|>",
|
101 |
+
"11"
|
102 |
+
],
|
103 |
+
"tokenizer_bos_token": [
|
104 |
+
null,
|
105 |
+
"None"
|
106 |
+
],
|
107 |
+
"eot_token_id": 11,
|
108 |
+
"max_length": 32768,
|
109 |
+
"task_hashes": {
|
110 |
+
"acva": "f573ae5740e68711d257f2dc4a23db7c6b1c04895364f1af4b4eb64bfab793a4"
|
111 |
+
},
|
112 |
+
"model_source": "hf",
|
113 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
114 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
115 |
+
"system_instruction": null,
|
116 |
+
"system_instruction_sha": null,
|
117 |
+
"fewshot_as_multiturn": false,
|
118 |
+
"chat_template": null,
|
119 |
+
"chat_template_sha": null,
|
120 |
+
"start_time": 600072.370318618,
|
121 |
+
"end_time": 600217.222010416,
|
122 |
+
"total_evaluation_time_seconds": "144.85169179795776"
|
123 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/ar_ifeval_0_shot.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ar_ifeval": {
|
4 |
+
"alias": "ar_ifeval",
|
5 |
+
"prompt_level_strict_acc,none": 0.08582089552238806,
|
6 |
+
"prompt_level_strict_acc_stderr,none": 0.012109752724743699,
|
7 |
+
"inst_level_strict_acc,none": 0.47918088737201364,
|
8 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
9 |
+
"prompt_level_loose_acc,none": 0.13805970149253732,
|
10 |
+
"prompt_level_loose_acc_stderr,none": 0.014914035308708435,
|
11 |
+
"inst_level_loose_acc,none": 0.5276450511945392,
|
12 |
+
"inst_level_loose_acc_stderr,none": "N/A"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"group_subtasks": {
|
16 |
+
"ar_ifeval": []
|
17 |
+
},
|
18 |
+
"configs": {
|
19 |
+
"ar_ifeval": {
|
20 |
+
"task": "ar_ifeval",
|
21 |
+
"dataset_path": "lm_eval/tasks/ar_ifeval/ar_ifeval.py",
|
22 |
+
"dataset_name": "ar_ifeval",
|
23 |
+
"dataset_kwargs": {
|
24 |
+
"trust_remote_code": true
|
25 |
+
},
|
26 |
+
"test_split": "test",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": 0,
|
29 |
+
"process_results": "def process_results(doc, results):\n\n response = results[0]\n out_strict = process_sample(doc, response, 'strict')\n out_loose = process_sample(doc, response, 'loose')\n\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "prompt_level_strict_acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "inst_level_strict_acc",
|
42 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "prompt_level_loose_acc",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"metric": "inst_level_loose_acc",
|
52 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
53 |
+
"higher_is_better": true
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"output_type": "generate_until",
|
57 |
+
"generation_kwargs": {
|
58 |
+
"until": [],
|
59 |
+
"do_sample": false,
|
60 |
+
"temperature": 0.0,
|
61 |
+
"max_gen_toks": 1280
|
62 |
+
},
|
63 |
+
"repeats": 1,
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 4.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"ar_ifeval": 4.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"ar_ifeval": 0
|
75 |
+
},
|
76 |
+
"higher_is_better": {
|
77 |
+
"ar_ifeval": {
|
78 |
+
"prompt_level_strict_acc": true,
|
79 |
+
"inst_level_strict_acc": true,
|
80 |
+
"prompt_level_loose_acc": true,
|
81 |
+
"inst_level_loose_acc": true
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"n-samples": {
|
85 |
+
"ar_ifeval": {
|
86 |
+
"original": 536,
|
87 |
+
"effective": 536
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"config": {
|
91 |
+
"model": "hf",
|
92 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
93 |
+
"model_num_parameters": 7455550464,
|
94 |
+
"model_dtype": "torch.bfloat16",
|
95 |
+
"model_revision": "main",
|
96 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
97 |
+
"batch_size": 1,
|
98 |
+
"batch_sizes": [],
|
99 |
+
"device": null,
|
100 |
+
"use_cache": null,
|
101 |
+
"limit": null,
|
102 |
+
"bootstrap_iters": 100000,
|
103 |
+
"gen_kwargs": null,
|
104 |
+
"random_seed": 0,
|
105 |
+
"numpy_seed": 1234,
|
106 |
+
"torch_seed": 1234,
|
107 |
+
"fewshot_seed": 1234
|
108 |
+
},
|
109 |
+
"git_hash": "b955b2950",
|
110 |
+
"date": 1739621196.897086,
|
111 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
112 |
+
"transformers_version": "4.48.3",
|
113 |
+
"upper_git_hash": null,
|
114 |
+
"tokenizer_pad_token": [
|
115 |
+
"<|pad|>",
|
116 |
+
"2023"
|
117 |
+
],
|
118 |
+
"tokenizer_eos_token": [
|
119 |
+
"<|endoftext|>",
|
120 |
+
"11"
|
121 |
+
],
|
122 |
+
"tokenizer_bos_token": [
|
123 |
+
null,
|
124 |
+
"None"
|
125 |
+
],
|
126 |
+
"eot_token_id": 11,
|
127 |
+
"max_length": 32768,
|
128 |
+
"task_hashes": {
|
129 |
+
"ar_ifeval": "ca837eed1e9f468712643d1fab81b7b48c88a8799239851476bdc889990e6b41"
|
130 |
+
},
|
131 |
+
"model_source": "hf",
|
132 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
133 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
134 |
+
"system_instruction": null,
|
135 |
+
"system_instruction_sha": null,
|
136 |
+
"fewshot_as_multiturn": false,
|
137 |
+
"chat_template": "{%- if tools %}\n{{- '<|system|>\\n' }}\n{%- if messages[0]['role'] == 'system' %}\n{{- messages[0]['content'] }}\n{%- set remaining_messages = messages[1:] %}\n{%- else %}\n{%- set remaining_messages = messages %}\n{%- endif %}\n{{- 'You are a Falcon assistant skilled in function calling. You are helpful, respectful, and concise.\\n\\n# Tools\\n\\nYou have access to the following functions. You MUST use them to answer questions when needed. For each function call, you MUST return a JSON object inside <tool_call></tool_call> tags.\\n\\n<tools>' + tools|tojson(indent=2) + '</tools>\\n\\n# Output Format\\n\\nYour response MUST follow this format when making function calls:\\n<tool_call>\\n[\\n {\"name\": \"function_name\", \"arguments\": {\"arg1\": \"value1\", \"arg2\": \"value2\"}},\\n {\"name\": \"another_function\", \"arguments\": {\"arg\": \"value\"}}\\n]\\n</tool_call>\\nIf no function calls are needed, respond normally without the tool_call tags.\\n' }}\n{%- for message in remaining_messages %}\n{%- if message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if message.content %}\n{{- '<|assistant|>\\n' + message['content'] }}\n{%- endif %}\n{%- if message.tool_calls %}\n{{- '\\n<tool_call>\\n' }}\n{{- message.tool_calls|tojson(indent=2) }}\n{{- '\\n</tool_call>' }}\n{%- endif %}\n{{- eos_token + '\\n' }}\n{%- elif message['role'] == 'tool' %}\n{{- '<|assistant|>\\n<tool_response>\\n' + message['content'] + '\\n</tool_response>\\n' }}\n{%- endif %}\n{%- endfor %}\n{{- '<|assistant|>\\n' if add_generation_prompt }}\n{%- else %}\n{%- for message in messages %}\n{%- if message['role'] == 'system' %}\n{{- '<|system|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if not loop.last %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token }}\n{%- endif %}\n{%- endif %}\n{%- if loop.last and add_generation_prompt %}\n{{- '<|assistant|>\\n' }}\n{%- endif %}\n{%- endfor %}\n{%- endif %}",
|
138 |
+
"chat_template_sha": "914ccd80356f5822d1a50d97546e37f60c04ed831fe431aa40346574ec266901",
|
139 |
+
"start_time": 1395880.012817552,
|
140 |
+
"end_time": 1401371.318791154,
|
141 |
+
"total_evaluation_time_seconds": "5491.305973601993"
|
142 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/araMath_v3_5_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araMath_v3": {
|
4 |
+
"alias": "araMath_v3",
|
5 |
+
"acc,none": 0.5652892561983471,
|
6 |
+
"acc_stderr,none": 0.020170519477736983,
|
7 |
+
"acc_norm,none": 0.5652892561983471,
|
8 |
+
"acc_norm_stderr,none": 0.020170519477736983
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araMath_v3": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araMath_v3": {
|
16 |
+
"task": "araMath_v3",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araMath_v3/araMath_v3.py",
|
21 |
+
"dataset_name": "araMath_v3",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "{{choices}}",
|
31 |
+
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"araMath_v3": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"araMath_v3": 5
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"araMath_v3": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"araMath_v3": {
|
70 |
+
"original": 605,
|
71 |
+
"effective": 605
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
77 |
+
"model_num_parameters": 7455550464,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739621084.921236,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|pad|>",
|
100 |
+
"2023"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|endoftext|>",
|
104 |
+
"11"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
null,
|
108 |
+
"None"
|
109 |
+
],
|
110 |
+
"eot_token_id": 11,
|
111 |
+
"max_length": 32768,
|
112 |
+
"task_hashes": {
|
113 |
+
"araMath_v3": "b7e29b20c532c7420cc659c6586d56642070560abff0925ed01ad8f200d8e72b"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
117 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{%- if tools %}\n{{- '<|system|>\\n' }}\n{%- if messages[0]['role'] == 'system' %}\n{{- messages[0]['content'] }}\n{%- set remaining_messages = messages[1:] %}\n{%- else %}\n{%- set remaining_messages = messages %}\n{%- endif %}\n{{- 'You are a Falcon assistant skilled in function calling. You are helpful, respectful, and concise.\\n\\n# Tools\\n\\nYou have access to the following functions. You MUST use them to answer questions when needed. For each function call, you MUST return a JSON object inside <tool_call></tool_call> tags.\\n\\n<tools>' + tools|tojson(indent=2) + '</tools>\\n\\n# Output Format\\n\\nYour response MUST follow this format when making function calls:\\n<tool_call>\\n[\\n {\"name\": \"function_name\", \"arguments\": {\"arg1\": \"value1\", \"arg2\": \"value2\"}},\\n {\"name\": \"another_function\", \"arguments\": {\"arg\": \"value\"}}\\n]\\n</tool_call>\\nIf no function calls are needed, respond normally without the tool_call tags.\\n' }}\n{%- for message in remaining_messages %}\n{%- if message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if message.content %}\n{{- '<|assistant|>\\n' + message['content'] }}\n{%- endif %}\n{%- if message.tool_calls %}\n{{- '\\n<tool_call>\\n' }}\n{{- message.tool_calls|tojson(indent=2) }}\n{{- '\\n</tool_call>' }}\n{%- endif %}\n{{- eos_token + '\\n' }}\n{%- elif message['role'] == 'tool' %}\n{{- '<|assistant|>\\n<tool_response>\\n' + message['content'] + '\\n</tool_response>\\n' }}\n{%- endif %}\n{%- endfor %}\n{{- '<|assistant|>\\n' if add_generation_prompt }}\n{%- else %}\n{%- for message in messages %}\n{%- if message['role'] == 'system' %}\n{{- '<|system|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if not loop.last %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token }}\n{%- endif %}\n{%- endif %}\n{%- if loop.last and add_generation_prompt %}\n{{- '<|assistant|>\\n' }}\n{%- endif %}\n{%- endfor %}\n{%- endif %}",
|
122 |
+
"chat_template_sha": "914ccd80356f5822d1a50d97546e37f60c04ed831fe431aa40346574ec266901",
|
123 |
+
"start_time": 1395768.116667791,
|
124 |
+
"end_time": 1395816.745740765,
|
125 |
+
"total_evaluation_time_seconds": "48.629072973970324"
|
126 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/araPro_0_shot.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araPro": {
|
4 |
+
"alias": "araPro",
|
5 |
+
"acc,none": 0.41471705658868224,
|
6 |
+
"acc_stderr,none": 0.006967450316480296,
|
7 |
+
"acc_norm,none": 0.41471705658868224,
|
8 |
+
"acc_norm_stderr,none": 0.006967450316480296
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araPro": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araPro": {
|
16 |
+
"task": "araPro",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araPro/araPro.py",
|
21 |
+
"dataset_name": "araPro",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "{{choices}}",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": true,
|
54 |
+
"doc_to_decontamination_query": "Question",
|
55 |
+
"metadata": {
|
56 |
+
"version": 2.0
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"versions": {
|
61 |
+
"araPro": 2.0
|
62 |
+
},
|
63 |
+
"n-shot": {
|
64 |
+
"araPro": 0
|
65 |
+
},
|
66 |
+
"higher_is_better": {
|
67 |
+
"araPro": {
|
68 |
+
"acc": true,
|
69 |
+
"acc_norm": true
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"n-samples": {
|
73 |
+
"araPro": {
|
74 |
+
"original": 5001,
|
75 |
+
"effective": 5001
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"config": {
|
79 |
+
"model": "hf",
|
80 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
81 |
+
"model_num_parameters": 7455550464,
|
82 |
+
"model_dtype": "torch.bfloat16",
|
83 |
+
"model_revision": "main",
|
84 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
85 |
+
"batch_size": 1,
|
86 |
+
"batch_sizes": [],
|
87 |
+
"device": null,
|
88 |
+
"use_cache": null,
|
89 |
+
"limit": null,
|
90 |
+
"bootstrap_iters": 100000,
|
91 |
+
"gen_kwargs": null,
|
92 |
+
"random_seed": 0,
|
93 |
+
"numpy_seed": 1234,
|
94 |
+
"torch_seed": 1234,
|
95 |
+
"fewshot_seed": 1234
|
96 |
+
},
|
97 |
+
"git_hash": "b955b2950",
|
98 |
+
"date": 1739617143.3614087,
|
99 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
100 |
+
"transformers_version": "4.48.3",
|
101 |
+
"upper_git_hash": null,
|
102 |
+
"tokenizer_pad_token": [
|
103 |
+
"<|pad|>",
|
104 |
+
"2023"
|
105 |
+
],
|
106 |
+
"tokenizer_eos_token": [
|
107 |
+
"<|endoftext|>",
|
108 |
+
"11"
|
109 |
+
],
|
110 |
+
"tokenizer_bos_token": [
|
111 |
+
null,
|
112 |
+
"None"
|
113 |
+
],
|
114 |
+
"eot_token_id": 11,
|
115 |
+
"max_length": 32768,
|
116 |
+
"task_hashes": {
|
117 |
+
"araPro": "063166ad2e52146b6a051c978bf54b1397281e222da633e81fa50357d2409ee9"
|
118 |
+
},
|
119 |
+
"model_source": "hf",
|
120 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
121 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
122 |
+
"system_instruction": null,
|
123 |
+
"system_instruction_sha": null,
|
124 |
+
"fewshot_as_multiturn": false,
|
125 |
+
"chat_template": "{%- if tools %}\n{{- '<|system|>\\n' }}\n{%- if messages[0]['role'] == 'system' %}\n{{- messages[0]['content'] }}\n{%- set remaining_messages = messages[1:] %}\n{%- else %}\n{%- set remaining_messages = messages %}\n{%- endif %}\n{{- 'You are a Falcon assistant skilled in function calling. You are helpful, respectful, and concise.\\n\\n# Tools\\n\\nYou have access to the following functions. You MUST use them to answer questions when needed. For each function call, you MUST return a JSON object inside <tool_call></tool_call> tags.\\n\\n<tools>' + tools|tojson(indent=2) + '</tools>\\n\\n# Output Format\\n\\nYour response MUST follow this format when making function calls:\\n<tool_call>\\n[\\n {\"name\": \"function_name\", \"arguments\": {\"arg1\": \"value1\", \"arg2\": \"value2\"}},\\n {\"name\": \"another_function\", \"arguments\": {\"arg\": \"value\"}}\\n]\\n</tool_call>\\nIf no function calls are needed, respond normally without the tool_call tags.\\n' }}\n{%- for message in remaining_messages %}\n{%- if message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if message.content %}\n{{- '<|assistant|>\\n' + message['content'] }}\n{%- endif %}\n{%- if message.tool_calls %}\n{{- '\\n<tool_call>\\n' }}\n{{- message.tool_calls|tojson(indent=2) }}\n{{- '\\n</tool_call>' }}\n{%- endif %}\n{{- eos_token + '\\n' }}\n{%- elif message['role'] == 'tool' %}\n{{- '<|assistant|>\\n<tool_response>\\n' + message['content'] + '\\n</tool_response>\\n' }}\n{%- endif %}\n{%- endfor %}\n{{- '<|assistant|>\\n' if add_generation_prompt }}\n{%- else %}\n{%- for message in messages %}\n{%- if message['role'] == 'system' %}\n{{- '<|system|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if not loop.last %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token }}\n{%- endif %}\n{%- endif %}\n{%- if loop.last and add_generation_prompt %}\n{{- '<|assistant|>\\n' }}\n{%- endif %}\n{%- endfor %}\n{%- endif %}",
|
126 |
+
"chat_template_sha": "914ccd80356f5822d1a50d97546e37f60c04ed831fe431aa40346574ec266901",
|
127 |
+
"start_time": 1391826.416201954,
|
128 |
+
"end_time": 1394850.089034202,
|
129 |
+
"total_evaluation_time_seconds": "3023.672832248034"
|
130 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/arabicmmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/Falcon3-7B-Instruct/etec_v2_0_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"etec_v2": {
|
4 |
+
"alias": "etec_v2",
|
5 |
+
"acc,none": 0.3751987281399046,
|
6 |
+
"acc_stderr,none": 0.01114886834610489,
|
7 |
+
"acc_norm,none": 0.3751987281399046,
|
8 |
+
"acc_norm_stderr,none": 0.01114886834610489
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"etec_v2": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"etec_v2": {
|
16 |
+
"task": "etec_v2",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/etec_v2/etec.py",
|
21 |
+
"dataset_name": "etec_v2",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n print(doc[\"label\"])\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": int(doc[\"label\"])-1,\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 0,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"etec_v2": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"etec_v2": 0
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"etec_v2": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"etec_v2": {
|
70 |
+
"original": 1887,
|
71 |
+
"effective": 1887
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
77 |
+
"model_num_parameters": 7455550464,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739620236.678696,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|pad|>",
|
100 |
+
"2023"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|endoftext|>",
|
104 |
+
"11"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
null,
|
108 |
+
"None"
|
109 |
+
],
|
110 |
+
"eot_token_id": 11,
|
111 |
+
"max_length": 32768,
|
112 |
+
"task_hashes": {
|
113 |
+
"etec_v2": "3a8dc6484af6c9538f122c1bbe5c6866dbe14df841fdf04ab7ff2b6437e8aeae"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
117 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{%- if tools %}\n{{- '<|system|>\\n' }}\n{%- if messages[0]['role'] == 'system' %}\n{{- messages[0]['content'] }}\n{%- set remaining_messages = messages[1:] %}\n{%- else %}\n{%- set remaining_messages = messages %}\n{%- endif %}\n{{- 'You are a Falcon assistant skilled in function calling. You are helpful, respectful, and concise.\\n\\n# Tools\\n\\nYou have access to the following functions. You MUST use them to answer questions when needed. For each function call, you MUST return a JSON object inside <tool_call></tool_call> tags.\\n\\n<tools>' + tools|tojson(indent=2) + '</tools>\\n\\n# Output Format\\n\\nYour response MUST follow this format when making function calls:\\n<tool_call>\\n[\\n {\"name\": \"function_name\", \"arguments\": {\"arg1\": \"value1\", \"arg2\": \"value2\"}},\\n {\"name\": \"another_function\", \"arguments\": {\"arg\": \"value\"}}\\n]\\n</tool_call>\\nIf no function calls are needed, respond normally without the tool_call tags.\\n' }}\n{%- for message in remaining_messages %}\n{%- if message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if message.content %}\n{{- '<|assistant|>\\n' + message['content'] }}\n{%- endif %}\n{%- if message.tool_calls %}\n{{- '\\n<tool_call>\\n' }}\n{{- message.tool_calls|tojson(indent=2) }}\n{{- '\\n</tool_call>' }}\n{%- endif %}\n{{- eos_token + '\\n' }}\n{%- elif message['role'] == 'tool' %}\n{{- '<|assistant|>\\n<tool_response>\\n' + message['content'] + '\\n</tool_response>\\n' }}\n{%- endif %}\n{%- endfor %}\n{{- '<|assistant|>\\n' if add_generation_prompt }}\n{%- else %}\n{%- for message in messages %}\n{%- if message['role'] == 'system' %}\n{{- '<|system|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if not loop.last %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token }}\n{%- endif %}\n{%- endif %}\n{%- if loop.last and add_generation_prompt %}\n{{- '<|assistant|>\\n' }}\n{%- endif %}\n{%- endfor %}\n{%- endif %}",
|
122 |
+
"chat_template_sha": "914ccd80356f5822d1a50d97546e37f60c04ed831fe431aa40346574ec266901",
|
123 |
+
"start_time": 1394919.684315533,
|
124 |
+
"end_time": 1394995.42617788,
|
125 |
+
"total_evaluation_time_seconds": "75.7418623471167"
|
126 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/exams_ar_5_shot.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"exams_ar": {
|
4 |
+
"alias": "exams_ar",
|
5 |
+
"acc,none": 0.31843575418994413,
|
6 |
+
"acc_stderr,none": 0.020122499132803468,
|
7 |
+
"acc_norm,none": 0.31843575418994413,
|
8 |
+
"acc_norm_stderr,none": 0.020122499132803468
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"exams_ar": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"exams_ar": {
|
16 |
+
"task": "exams_ar",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/exams_ar",
|
21 |
+
"dataset_name": "exams_ar",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"test_split": "test",
|
26 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n\n def _process_docs(doc):\n def format_example(doc, keys):\n \"\"\"\n <prompt>\n \u0633\u0624\u0627\u0644:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n \u0627\u062c\u0627\u0628\u0629:\n \"\"\"\n \n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n def _format_subject(subject):\n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n\n keys = [\"A\", \"B\", \"C\", \"D\"]\n \n subject = doc['id'].split(\"-\")[0]\n description = f\"\ufed2\ufef4\ufee3\ufe8d \ufef2\ufee0\ufef3 \ufe84\ufeb4\ufe8c\ufedf\ufe93 \ufe8d\ufefc\ufea8\ufe98\ufef3\ufe8d\ufead \ufee2\ufee7 \ufee2\ufe98\ufecb\ufea9\ufea9 (\ufee2\ufecb \ufe8d\ufefa\ufe9f\ufe8e\ufe91\ufe8e\ufe97) \ufea1\ufeee\ufedf {_format_subject(subject)} \\n\" #\ufee2\ufee7 \ufed2\ufec0\ufee0\ufedb \ufe8e\ufea8\ufe97\ufead \ufe88\ufe9f\ufe8e\ufe91\ufe93 \ufeed\ufe8e\ufea3\ufea9\ufe93 \ufee2\ufee7 \ufe90\ufef4\ufee7 'A\u060c B\u060c C\u060c D' \ufea9\ufeee\ufee7 \ufeb5\ufeae\ufea3\\n\"\n\n out_doc = {\n \"idx\": doc[\"idx\"],\n \"id\": doc[\"id\"],\n 'dsecription': description,\n \"query\": format_example(doc, keys), # \"Question: \" + doc[\"question\"]['stem'] + \"\\nAnswer:\",\n \"choices\": keys,\n \"gold\": [\"A\", \"B\", \"C\", \"D\"].index(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_docs)\n",
|
27 |
+
"doc_to_text": "query",
|
28 |
+
"doc_to_target": "gold",
|
29 |
+
"doc_to_choice": "choices",
|
30 |
+
"description": "description",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 5,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "acc_norm",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "multiple_choice",
|
47 |
+
"repeats": 1,
|
48 |
+
"should_decontaminate": true,
|
49 |
+
"doc_to_decontamination_query": "query",
|
50 |
+
"metadata": {
|
51 |
+
"version": 0.0
|
52 |
+
}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"versions": {
|
56 |
+
"exams_ar": 0.0
|
57 |
+
},
|
58 |
+
"n-shot": {
|
59 |
+
"exams_ar": 5
|
60 |
+
},
|
61 |
+
"higher_is_better": {
|
62 |
+
"exams_ar": {
|
63 |
+
"acc": true,
|
64 |
+
"acc_norm": true
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"n-samples": {
|
68 |
+
"exams_ar": {
|
69 |
+
"original": 537,
|
70 |
+
"effective": 537
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"config": {
|
74 |
+
"model": "hf",
|
75 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
76 |
+
"model_num_parameters": 7455550464,
|
77 |
+
"model_dtype": "torch.bfloat16",
|
78 |
+
"model_revision": "main",
|
79 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
80 |
+
"batch_size": 1,
|
81 |
+
"batch_sizes": [],
|
82 |
+
"device": null,
|
83 |
+
"use_cache": null,
|
84 |
+
"limit": null,
|
85 |
+
"bootstrap_iters": 100000,
|
86 |
+
"gen_kwargs": null,
|
87 |
+
"random_seed": 0,
|
88 |
+
"numpy_seed": 1234,
|
89 |
+
"torch_seed": 1234,
|
90 |
+
"fewshot_seed": 1234
|
91 |
+
},
|
92 |
+
"git_hash": "5e10e017",
|
93 |
+
"date": 1736889028.6416683,
|
94 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
95 |
+
"transformers_version": "4.48.0",
|
96 |
+
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
|
97 |
+
"tokenizer_pad_token": [
|
98 |
+
"<|pad|>",
|
99 |
+
"2023"
|
100 |
+
],
|
101 |
+
"tokenizer_eos_token": [
|
102 |
+
"<|endoftext|>",
|
103 |
+
"11"
|
104 |
+
],
|
105 |
+
"tokenizer_bos_token": [
|
106 |
+
null,
|
107 |
+
"None"
|
108 |
+
],
|
109 |
+
"eot_token_id": 11,
|
110 |
+
"max_length": 32768,
|
111 |
+
"task_hashes": {
|
112 |
+
"exams_ar": "f52ab3f14b240558420910fdb453ccb45c945cec187c0e60ea51cf6eff08973a"
|
113 |
+
},
|
114 |
+
"model_source": "hf",
|
115 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
116 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
117 |
+
"system_instruction": null,
|
118 |
+
"system_instruction_sha": null,
|
119 |
+
"fewshot_as_multiturn": false,
|
120 |
+
"chat_template": null,
|
121 |
+
"chat_template_sha": null,
|
122 |
+
"start_time": 599279.04705073,
|
123 |
+
"end_time": 599692.233103212,
|
124 |
+
"total_evaluation_time_seconds": "413.1860524819931"
|
125 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/gat_0_shot.json
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gat": {
|
4 |
+
"acc,none": 0.27994481374639407,
|
5 |
+
"acc_stderr,none": 0.003542796359675536,
|
6 |
+
"alias": "gat"
|
7 |
+
},
|
8 |
+
"gat_algebra": {
|
9 |
+
"alias": " - gat_algebra",
|
10 |
+
"acc,none": 0.2571428571428571,
|
11 |
+
"acc_stderr,none": 0.008420562208967575
|
12 |
+
},
|
13 |
+
"gat_analogy": {
|
14 |
+
"alias": " - gat_analogy",
|
15 |
+
"acc,none": 0.24553734061930782,
|
16 |
+
"acc_stderr,none": 0.008216476082874105
|
17 |
+
},
|
18 |
+
"gat_arithmetic": {
|
19 |
+
"alias": " - gat_arithmetic",
|
20 |
+
"acc,none": 0.26573426573426573,
|
21 |
+
"acc_stderr,none": 0.008475894211016492
|
22 |
+
},
|
23 |
+
"gat_association": {
|
24 |
+
"alias": " - gat_association",
|
25 |
+
"acc,none": 0.24019138755980862,
|
26 |
+
"acc_stderr,none": 0.013221495215360054
|
27 |
+
},
|
28 |
+
"gat_comparisons": {
|
29 |
+
"alias": " - gat_comparisons",
|
30 |
+
"acc,none": 0.319672131147541,
|
31 |
+
"acc_stderr,none": 0.013357022766710734
|
32 |
+
},
|
33 |
+
"gat_completion": {
|
34 |
+
"alias": " - gat_completion",
|
35 |
+
"acc,none": 0.27520661157024795,
|
36 |
+
"acc_stderr,none": 0.012844683062506254
|
37 |
+
},
|
38 |
+
"gat_contextual": {
|
39 |
+
"alias": " - gat_contextual",
|
40 |
+
"acc,none": 0.26993865030674846,
|
41 |
+
"acc_stderr,none": 0.01229815625441917
|
42 |
+
},
|
43 |
+
"gat_geometry": {
|
44 |
+
"alias": " - gat_geometry",
|
45 |
+
"acc,none": 0.2876712328767123,
|
46 |
+
"acc_stderr,none": 0.023726723391354485
|
47 |
+
},
|
48 |
+
"gat_reading": {
|
49 |
+
"alias": " - gat_reading",
|
50 |
+
"acc,none": 0.3568998109640832,
|
51 |
+
"acc_stderr,none": 0.009317121354774414
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"groups": {
|
55 |
+
"gat": {
|
56 |
+
"acc,none": 0.27994481374639407,
|
57 |
+
"acc_stderr,none": 0.003542796359675536,
|
58 |
+
"alias": "gat"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"group_subtasks": {
|
62 |
+
"gat": [
|
63 |
+
"gat_analogy",
|
64 |
+
"gat_association",
|
65 |
+
"gat_completion",
|
66 |
+
"gat_reading",
|
67 |
+
"gat_algebra",
|
68 |
+
"gat_arithmetic",
|
69 |
+
"gat_comparisons",
|
70 |
+
"gat_contextual",
|
71 |
+
"gat_geometry"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"configs": {
|
75 |
+
"gat_algebra": {
|
76 |
+
"task": "gat_algebra",
|
77 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
78 |
+
"dataset_name": "algebra",
|
79 |
+
"dataset_kwargs": {
|
80 |
+
"trust_remote_code": true
|
81 |
+
},
|
82 |
+
"test_split": "test",
|
83 |
+
"fewshot_split": "validation",
|
84 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
85 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
86 |
+
"doc_to_target": "{{label}}",
|
87 |
+
"doc_to_choice": [
|
88 |
+
"\u0623",
|
89 |
+
"\u0628",
|
90 |
+
"\u062c",
|
91 |
+
"\u062f"
|
92 |
+
],
|
93 |
+
"description": "",
|
94 |
+
"target_delimiter": " ",
|
95 |
+
"fewshot_delimiter": "\n\n",
|
96 |
+
"num_fewshot": 0,
|
97 |
+
"metric_list": [
|
98 |
+
{
|
99 |
+
"metric": "acc",
|
100 |
+
"aggregation": "mean",
|
101 |
+
"higher_is_better": true
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"output_type": "multiple_choice",
|
105 |
+
"repeats": 1,
|
106 |
+
"should_decontaminate": false,
|
107 |
+
"metadata": {
|
108 |
+
"version": 0.0
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"gat_analogy": {
|
112 |
+
"task": "gat_analogy",
|
113 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
114 |
+
"dataset_name": "analogy",
|
115 |
+
"dataset_kwargs": {
|
116 |
+
"trust_remote_code": true
|
117 |
+
},
|
118 |
+
"test_split": "test",
|
119 |
+
"fewshot_split": "validation",
|
120 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
121 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
122 |
+
"doc_to_target": "{{label}}",
|
123 |
+
"doc_to_choice": [
|
124 |
+
"\u0623",
|
125 |
+
"\u0628",
|
126 |
+
"\u062c",
|
127 |
+
"\u062f"
|
128 |
+
],
|
129 |
+
"description": "",
|
130 |
+
"target_delimiter": " ",
|
131 |
+
"fewshot_delimiter": "\n\n",
|
132 |
+
"num_fewshot": 0,
|
133 |
+
"metric_list": [
|
134 |
+
{
|
135 |
+
"metric": "acc",
|
136 |
+
"aggregation": "mean",
|
137 |
+
"higher_is_better": true
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"output_type": "multiple_choice",
|
141 |
+
"repeats": 1,
|
142 |
+
"should_decontaminate": false,
|
143 |
+
"metadata": {
|
144 |
+
"version": 0.0
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"gat_arithmetic": {
|
148 |
+
"task": "gat_arithmetic",
|
149 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
150 |
+
"dataset_name": "arithmetic",
|
151 |
+
"dataset_kwargs": {
|
152 |
+
"trust_remote_code": true
|
153 |
+
},
|
154 |
+
"test_split": "test",
|
155 |
+
"fewshot_split": "validation",
|
156 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
157 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
158 |
+
"doc_to_target": "{{label}}",
|
159 |
+
"doc_to_choice": [
|
160 |
+
"\u0623",
|
161 |
+
"\u0628",
|
162 |
+
"\u062c",
|
163 |
+
"\u062f"
|
164 |
+
],
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"num_fewshot": 0,
|
169 |
+
"metric_list": [
|
170 |
+
{
|
171 |
+
"metric": "acc",
|
172 |
+
"aggregation": "mean",
|
173 |
+
"higher_is_better": true
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"output_type": "multiple_choice",
|
177 |
+
"repeats": 1,
|
178 |
+
"should_decontaminate": false,
|
179 |
+
"metadata": {
|
180 |
+
"version": 0.0
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"gat_association": {
|
184 |
+
"task": "gat_association",
|
185 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
186 |
+
"dataset_name": "association",
|
187 |
+
"dataset_kwargs": {
|
188 |
+
"trust_remote_code": true
|
189 |
+
},
|
190 |
+
"test_split": "test",
|
191 |
+
"fewshot_split": "validation",
|
192 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
193 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
194 |
+
"doc_to_target": "{{label}}",
|
195 |
+
"doc_to_choice": [
|
196 |
+
"\u0623",
|
197 |
+
"\u0628",
|
198 |
+
"\u062c",
|
199 |
+
"\u062f"
|
200 |
+
],
|
201 |
+
"description": "",
|
202 |
+
"target_delimiter": " ",
|
203 |
+
"fewshot_delimiter": "\n\n",
|
204 |
+
"num_fewshot": 0,
|
205 |
+
"metric_list": [
|
206 |
+
{
|
207 |
+
"metric": "acc",
|
208 |
+
"aggregation": "mean",
|
209 |
+
"higher_is_better": true
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"output_type": "multiple_choice",
|
213 |
+
"repeats": 1,
|
214 |
+
"should_decontaminate": false,
|
215 |
+
"metadata": {
|
216 |
+
"version": 0.0
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"gat_comparisons": {
|
220 |
+
"task": "gat_comparisons",
|
221 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
222 |
+
"dataset_name": "comparisons",
|
223 |
+
"dataset_kwargs": {
|
224 |
+
"trust_remote_code": true
|
225 |
+
},
|
226 |
+
"test_split": "test",
|
227 |
+
"fewshot_split": "validation",
|
228 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
229 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
230 |
+
"doc_to_target": "{{label}}",
|
231 |
+
"doc_to_choice": [
|
232 |
+
"\u0623",
|
233 |
+
"\u0628",
|
234 |
+
"\u062c",
|
235 |
+
"\u062f"
|
236 |
+
],
|
237 |
+
"description": "",
|
238 |
+
"target_delimiter": " ",
|
239 |
+
"fewshot_delimiter": "\n\n",
|
240 |
+
"num_fewshot": 0,
|
241 |
+
"metric_list": [
|
242 |
+
{
|
243 |
+
"metric": "acc",
|
244 |
+
"aggregation": "mean",
|
245 |
+
"higher_is_better": true
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"output_type": "multiple_choice",
|
249 |
+
"repeats": 1,
|
250 |
+
"should_decontaminate": false,
|
251 |
+
"metadata": {
|
252 |
+
"version": 0.0
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"gat_completion": {
|
256 |
+
"task": "gat_completion",
|
257 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
258 |
+
"dataset_name": "completion",
|
259 |
+
"dataset_kwargs": {
|
260 |
+
"trust_remote_code": true
|
261 |
+
},
|
262 |
+
"test_split": "test",
|
263 |
+
"fewshot_split": "validation",
|
264 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
265 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
266 |
+
"doc_to_target": "{{label}}",
|
267 |
+
"doc_to_choice": [
|
268 |
+
"\u0623",
|
269 |
+
"\u0628",
|
270 |
+
"\u062c",
|
271 |
+
"\u062f"
|
272 |
+
],
|
273 |
+
"description": "",
|
274 |
+
"target_delimiter": " ",
|
275 |
+
"fewshot_delimiter": "\n\n",
|
276 |
+
"num_fewshot": 0,
|
277 |
+
"metric_list": [
|
278 |
+
{
|
279 |
+
"metric": "acc",
|
280 |
+
"aggregation": "mean",
|
281 |
+
"higher_is_better": true
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"output_type": "multiple_choice",
|
285 |
+
"repeats": 1,
|
286 |
+
"should_decontaminate": false,
|
287 |
+
"metadata": {
|
288 |
+
"version": 0.0
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"gat_contextual": {
|
292 |
+
"task": "gat_contextual",
|
293 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
294 |
+
"dataset_name": "contextual",
|
295 |
+
"dataset_kwargs": {
|
296 |
+
"trust_remote_code": true
|
297 |
+
},
|
298 |
+
"test_split": "test",
|
299 |
+
"fewshot_split": "validation",
|
300 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
301 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
302 |
+
"doc_to_target": "{{label}}",
|
303 |
+
"doc_to_choice": [
|
304 |
+
"\u0623",
|
305 |
+
"\u0628",
|
306 |
+
"\u062c",
|
307 |
+
"\u062f"
|
308 |
+
],
|
309 |
+
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
|
310 |
+
"target_delimiter": " ",
|
311 |
+
"fewshot_delimiter": "\n\n",
|
312 |
+
"num_fewshot": 0,
|
313 |
+
"metric_list": [
|
314 |
+
{
|
315 |
+
"metric": "acc",
|
316 |
+
"aggregation": "mean",
|
317 |
+
"higher_is_better": true
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"output_type": "multiple_choice",
|
321 |
+
"repeats": 1,
|
322 |
+
"should_decontaminate": false,
|
323 |
+
"metadata": {
|
324 |
+
"version": 0.0
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"gat_geometry": {
|
328 |
+
"task": "gat_geometry",
|
329 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
330 |
+
"dataset_name": "geometry",
|
331 |
+
"dataset_kwargs": {
|
332 |
+
"trust_remote_code": true
|
333 |
+
},
|
334 |
+
"test_split": "test",
|
335 |
+
"fewshot_split": "validation",
|
336 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
337 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
338 |
+
"doc_to_target": "{{label}}",
|
339 |
+
"doc_to_choice": [
|
340 |
+
"\u0623",
|
341 |
+
"\u0628",
|
342 |
+
"\u062c",
|
343 |
+
"\u062f"
|
344 |
+
],
|
345 |
+
"description": "",
|
346 |
+
"target_delimiter": " ",
|
347 |
+
"fewshot_delimiter": "\n\n",
|
348 |
+
"num_fewshot": 0,
|
349 |
+
"metric_list": [
|
350 |
+
{
|
351 |
+
"metric": "acc",
|
352 |
+
"aggregation": "mean",
|
353 |
+
"higher_is_better": true
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"output_type": "multiple_choice",
|
357 |
+
"repeats": 1,
|
358 |
+
"should_decontaminate": false,
|
359 |
+
"metadata": {
|
360 |
+
"version": 0.0
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"gat_reading": {
|
364 |
+
"task": "gat_reading",
|
365 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
366 |
+
"dataset_name": "reading",
|
367 |
+
"dataset_kwargs": {
|
368 |
+
"trust_remote_code": true
|
369 |
+
},
|
370 |
+
"test_split": "test",
|
371 |
+
"fewshot_split": "validation",
|
372 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
373 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
374 |
+
"doc_to_target": "{{label}}",
|
375 |
+
"doc_to_choice": [
|
376 |
+
"\u0623",
|
377 |
+
"\u0628",
|
378 |
+
"\u062c",
|
379 |
+
"\u062f"
|
380 |
+
],
|
381 |
+
"description": "",
|
382 |
+
"target_delimiter": " ",
|
383 |
+
"fewshot_delimiter": "\n\n",
|
384 |
+
"num_fewshot": 0,
|
385 |
+
"metric_list": [
|
386 |
+
{
|
387 |
+
"metric": "acc",
|
388 |
+
"aggregation": "mean",
|
389 |
+
"higher_is_better": true
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"output_type": "multiple_choice",
|
393 |
+
"repeats": 1,
|
394 |
+
"should_decontaminate": false,
|
395 |
+
"metadata": {
|
396 |
+
"version": 0.0
|
397 |
+
}
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"versions": {
|
401 |
+
"gat": 0,
|
402 |
+
"gat_algebra": 0.0,
|
403 |
+
"gat_analogy": 0.0,
|
404 |
+
"gat_arithmetic": 0.0,
|
405 |
+
"gat_association": 0.0,
|
406 |
+
"gat_comparisons": 0.0,
|
407 |
+
"gat_completion": 0.0,
|
408 |
+
"gat_contextual": 0.0,
|
409 |
+
"gat_geometry": 0.0,
|
410 |
+
"gat_reading": 0.0
|
411 |
+
},
|
412 |
+
"n-shot": {
|
413 |
+
"gat_algebra": 0,
|
414 |
+
"gat_analogy": 0,
|
415 |
+
"gat_arithmetic": 0,
|
416 |
+
"gat_association": 0,
|
417 |
+
"gat_comparisons": 0,
|
418 |
+
"gat_completion": 0,
|
419 |
+
"gat_contextual": 0,
|
420 |
+
"gat_geometry": 0,
|
421 |
+
"gat_reading": 0
|
422 |
+
},
|
423 |
+
"higher_is_better": {
|
424 |
+
"gat": {
|
425 |
+
"acc": true
|
426 |
+
},
|
427 |
+
"gat_algebra": {
|
428 |
+
"acc": true
|
429 |
+
},
|
430 |
+
"gat_analogy": {
|
431 |
+
"acc": true
|
432 |
+
},
|
433 |
+
"gat_arithmetic": {
|
434 |
+
"acc": true
|
435 |
+
},
|
436 |
+
"gat_association": {
|
437 |
+
"acc": true
|
438 |
+
},
|
439 |
+
"gat_comparisons": {
|
440 |
+
"acc": true
|
441 |
+
},
|
442 |
+
"gat_completion": {
|
443 |
+
"acc": true
|
444 |
+
},
|
445 |
+
"gat_contextual": {
|
446 |
+
"acc": true
|
447 |
+
},
|
448 |
+
"gat_geometry": {
|
449 |
+
"acc": true
|
450 |
+
},
|
451 |
+
"gat_reading": {
|
452 |
+
"acc": true
|
453 |
+
}
|
454 |
+
},
|
455 |
+
"n-samples": {
|
456 |
+
"gat_analogy": {
|
457 |
+
"original": 2745,
|
458 |
+
"effective": 2745
|
459 |
+
},
|
460 |
+
"gat_association": {
|
461 |
+
"original": 1045,
|
462 |
+
"effective": 1045
|
463 |
+
},
|
464 |
+
"gat_completion": {
|
465 |
+
"original": 1210,
|
466 |
+
"effective": 1210
|
467 |
+
},
|
468 |
+
"gat_reading": {
|
469 |
+
"original": 2645,
|
470 |
+
"effective": 2645
|
471 |
+
},
|
472 |
+
"gat_algebra": {
|
473 |
+
"original": 2695,
|
474 |
+
"effective": 2695
|
475 |
+
},
|
476 |
+
"gat_arithmetic": {
|
477 |
+
"original": 2717,
|
478 |
+
"effective": 2717
|
479 |
+
},
|
480 |
+
"gat_comparisons": {
|
481 |
+
"original": 1220,
|
482 |
+
"effective": 1220
|
483 |
+
},
|
484 |
+
"gat_contextual": {
|
485 |
+
"original": 1304,
|
486 |
+
"effective": 1304
|
487 |
+
},
|
488 |
+
"gat_geometry": {
|
489 |
+
"original": 365,
|
490 |
+
"effective": 365
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"config": {
|
494 |
+
"model": "hf",
|
495 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
496 |
+
"model_num_parameters": 7455550464,
|
497 |
+
"model_dtype": "torch.bfloat16",
|
498 |
+
"model_revision": "main",
|
499 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
500 |
+
"batch_size": 1,
|
501 |
+
"batch_sizes": [],
|
502 |
+
"device": null,
|
503 |
+
"use_cache": null,
|
504 |
+
"limit": null,
|
505 |
+
"bootstrap_iters": 100000,
|
506 |
+
"gen_kwargs": null,
|
507 |
+
"random_seed": 0,
|
508 |
+
"numpy_seed": 1234,
|
509 |
+
"torch_seed": 1234,
|
510 |
+
"fewshot_seed": 1234
|
511 |
+
},
|
512 |
+
"git_hash": "5e10e017",
|
513 |
+
"date": 1736891004.0192773,
|
514 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
515 |
+
"transformers_version": "4.48.0",
|
516 |
+
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
|
517 |
+
"tokenizer_pad_token": [
|
518 |
+
"<|pad|>",
|
519 |
+
"2023"
|
520 |
+
],
|
521 |
+
"tokenizer_eos_token": [
|
522 |
+
"<|endoftext|>",
|
523 |
+
"11"
|
524 |
+
],
|
525 |
+
"tokenizer_bos_token": [
|
526 |
+
null,
|
527 |
+
"None"
|
528 |
+
],
|
529 |
+
"eot_token_id": 11,
|
530 |
+
"max_length": 32768,
|
531 |
+
"task_hashes": {
|
532 |
+
"gat_analogy": "04ac010c48ed039457058b512b7ac0586c7c76a628da7caaf9aeb8f3e99ae5e3",
|
533 |
+
"gat_association": "2cbd868d220125bfcc54ae738592ad902191e4b7f804ce1772ae29e2d3bb3bf6",
|
534 |
+
"gat_completion": "74cf159ef4a3455a6a0e984fed8e9e9a12f0dc21fde95c2058216c5a711a4d31",
|
535 |
+
"gat_reading": "6f21934e536e7dca65361d01e5cafc27f8070c4f0dccf5a88c1fe071194b78a4",
|
536 |
+
"gat_algebra": "20750c926608570eaf87d29981e5ab49b2b097bd52d7f749c44ab4e175d9fdd2",
|
537 |
+
"gat_arithmetic": "c4b0c73c269d9eb3e8482fbda42e69191c28b95e75e1517d5f9142c6ef410204",
|
538 |
+
"gat_comparisons": "88bc22db186a50cab28938ec1fc332366fa0bc886bc98edf810cc9ae938405db",
|
539 |
+
"gat_contextual": "b8e88ff29b62b54eb834dca696304ca0fe1ce55d5cf7d0a9f0204456e3955be6",
|
540 |
+
"gat_geometry": "229545188469d0512a3297737f4ec7afe88d8a30e7e04f87b4982548e83b1e56"
|
541 |
+
},
|
542 |
+
"model_source": "hf",
|
543 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
544 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
545 |
+
"system_instruction": null,
|
546 |
+
"system_instruction_sha": null,
|
547 |
+
"fewshot_as_multiturn": false,
|
548 |
+
"chat_template": null,
|
549 |
+
"chat_template_sha": null,
|
550 |
+
"start_time": 601254.206185867,
|
551 |
+
"end_time": 601373.470204397,
|
552 |
+
"total_evaluation_time_seconds": "119.26401853002608"
|
553 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/moe_ien_mcq_0_shot.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_mcq": {
|
4 |
+
"alias": "moe_ien_mcq",
|
5 |
+
"acc,none": 0.5265265265265265,
|
6 |
+
"acc_stderr,none": 0.004995706870392996,
|
7 |
+
"acc_norm,none": 0.5265265265265265,
|
8 |
+
"acc_norm_stderr,none": 0.004995706870392996
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_mcq": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_mcq": {
|
16 |
+
"task": "moe_ien_mcq",
|
17 |
+
"dataset_path": "lm_eval/tasks/moe_ien_mcq/ien_moe_mcq.py",
|
18 |
+
"dataset_name": "moe_ien_mcq",
|
19 |
+
"dataset_kwargs": {
|
20 |
+
"trust_remote_code": true
|
21 |
+
},
|
22 |
+
"validation_split": "validation",
|
23 |
+
"test_split": "test",
|
24 |
+
"fewshot_split": "validation",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.split(\". \", 1)[1] if \". \" in choice else choice\n\n def format_example(doc, keys):\n question = doc[\"Question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"Choices\"])]\n \n )\n prompt = f\"\\n\\n\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"][0:len(doc[\"Choices\"])]\n out_doc = {\n \"Query\": format_example(doc, keys), \n \"Choices\": keys,\n \"gold\": int(doc[\"Answer\"])-1, ## \n } \n return out_doc\n \n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "Query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "{{Choices}}",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627\u202f\u064a\u0644\u064a\u202f\u0623\u0633\u0626\u0644\u0629\u202f\u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631\u202f\u0645\u0646\u202f\u0645\u062a\u0639\u062f\u062f\u202f(\u0645\u0639\u202f\u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a)\u202f\u0641\u064a\u202f{{Subject}}",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"fewshot_config": {
|
33 |
+
"sampler": "balanced_cat"
|
34 |
+
},
|
35 |
+
"num_fewshot": 0,
|
36 |
+
"metric_list": [
|
37 |
+
{
|
38 |
+
"metric": "acc",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"metric": "acc_norm",
|
44 |
+
"aggregation": "mean",
|
45 |
+
"higher_is_better": true
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"output_type": "multiple_choice",
|
49 |
+
"repeats": 1,
|
50 |
+
"should_decontaminate": true,
|
51 |
+
"doc_to_decontamination_query": "Query",
|
52 |
+
"metadata": {
|
53 |
+
"version": 0.0
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"versions": {
|
58 |
+
"moe_ien_mcq": 0.0
|
59 |
+
},
|
60 |
+
"n-shot": {
|
61 |
+
"moe_ien_mcq": 0
|
62 |
+
},
|
63 |
+
"higher_is_better": {
|
64 |
+
"moe_ien_mcq": {
|
65 |
+
"acc": true,
|
66 |
+
"acc_norm": true
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"n-samples": {
|
70 |
+
"moe_ien_mcq": {
|
71 |
+
"original": 9990,
|
72 |
+
"effective": 9990
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"config": {
|
76 |
+
"model": "hf",
|
77 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
78 |
+
"model_num_parameters": 7455550464,
|
79 |
+
"model_dtype": "torch.bfloat16",
|
80 |
+
"model_revision": "main",
|
81 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
82 |
+
"batch_size": 1,
|
83 |
+
"batch_sizes": [],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "b955b2950",
|
95 |
+
"date": 1739620378.768502,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.3",
|
98 |
+
"upper_git_hash": null,
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<|pad|>",
|
101 |
+
"2023"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"<|endoftext|>",
|
105 |
+
"11"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
null,
|
109 |
+
"None"
|
110 |
+
],
|
111 |
+
"eot_token_id": 11,
|
112 |
+
"max_length": 32768,
|
113 |
+
"task_hashes": {
|
114 |
+
"moe_ien_mcq": "1ae93edb904d572143b5f36dd5dfcc4b901240916d4735ea328083598c912446"
|
115 |
+
},
|
116 |
+
"model_source": "hf",
|
117 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
118 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
119 |
+
"system_instruction": null,
|
120 |
+
"system_instruction_sha": null,
|
121 |
+
"fewshot_as_multiturn": false,
|
122 |
+
"chat_template": "{%- if tools %}\n{{- '<|system|>\\n' }}\n{%- if messages[0]['role'] == 'system' %}\n{{- messages[0]['content'] }}\n{%- set remaining_messages = messages[1:] %}\n{%- else %}\n{%- set remaining_messages = messages %}\n{%- endif %}\n{{- 'You are a Falcon assistant skilled in function calling. You are helpful, respectful, and concise.\\n\\n# Tools\\n\\nYou have access to the following functions. You MUST use them to answer questions when needed. For each function call, you MUST return a JSON object inside <tool_call></tool_call> tags.\\n\\n<tools>' + tools|tojson(indent=2) + '</tools>\\n\\n# Output Format\\n\\nYour response MUST follow this format when making function calls:\\n<tool_call>\\n[\\n {\"name\": \"function_name\", \"arguments\": {\"arg1\": \"value1\", \"arg2\": \"value2\"}},\\n {\"name\": \"another_function\", \"arguments\": {\"arg\": \"value\"}}\\n]\\n</tool_call>\\nIf no function calls are needed, respond normally without the tool_call tags.\\n' }}\n{%- for message in remaining_messages %}\n{%- if message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if message.content %}\n{{- '<|assistant|>\\n' + message['content'] }}\n{%- endif %}\n{%- if message.tool_calls %}\n{{- '\\n<tool_call>\\n' }}\n{{- message.tool_calls|tojson(indent=2) }}\n{{- '\\n</tool_call>' }}\n{%- endif %}\n{{- eos_token + '\\n' }}\n{%- elif message['role'] == 'tool' %}\n{{- '<|assistant|>\\n<tool_response>\\n' + message['content'] + '\\n</tool_response>\\n' }}\n{%- endif %}\n{%- endfor %}\n{{- '<|assistant|>\\n' if add_generation_prompt }}\n{%- else %}\n{%- for message in messages %}\n{%- if message['role'] == 'system' %}\n{{- '<|system|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if not loop.last %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token }}\n{%- endif %}\n{%- endif %}\n{%- if loop.last and add_generation_prompt %}\n{{- '<|assistant|>\\n' }}\n{%- endif %}\n{%- endfor %}\n{%- endif %}",
|
123 |
+
"chat_template_sha": "914ccd80356f5822d1a50d97546e37f60c04ed831fe431aa40346574ec266901",
|
124 |
+
"start_time": 1395061.894176973,
|
125 |
+
"end_time": 1395336.684131379,
|
126 |
+
"total_evaluation_time_seconds": "274.78995440597646"
|
127 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/moe_ien_tf_0_shot.json
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_tf": {
|
4 |
+
"alias": "moe_ien_tf",
|
5 |
+
"acc,none": 0.576335222393955,
|
6 |
+
"acc_stderr,none": 0.006476086786980228,
|
7 |
+
"acc_norm,none": 0.576335222393955,
|
8 |
+
"acc_norm_stderr,none": 0.006476086786980228
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_tf": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_tf": {
|
16 |
+
"task": "moe_ien_tf",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/moe_ien_tf/moe_ien_tf.py",
|
21 |
+
"dataset_name": "moe_ien_tf",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n keys=[\"\u0635\u062d\u064a\u062d\u0629\",\n \"\u062e\u0627\u0637\u0626\u0629\"\n ]\n #keys =[\"\u0635\u0648\u0627\u0628\",\n # \"\u062e\u0637\u0623\"]\n target_key = int(doc[\"Answer\"])-1\n\n out_doc = {\n \"query\": \"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" +doc[\"Question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\", \n \"choices\": keys,\n \"gold\": target_key,\n }\n return out_doc\n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "choices",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{Subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d\u064a\u062d\u0629' \u0623\u0648 '\u062e\u0627\u0637\u0626\u0629' \u062f\u0648\u0646 \u0634\u0631\u062d ",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": false,
|
54 |
+
"metadata": {
|
55 |
+
"version": 2.0
|
56 |
+
}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"versions": {
|
60 |
+
"moe_ien_tf": 2.0
|
61 |
+
},
|
62 |
+
"n-shot": {
|
63 |
+
"moe_ien_tf": 0
|
64 |
+
},
|
65 |
+
"higher_is_better": {
|
66 |
+
"moe_ien_tf": {
|
67 |
+
"acc": true,
|
68 |
+
"acc_norm": true
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"n-samples": {
|
72 |
+
"moe_ien_tf": {
|
73 |
+
"original": 5823,
|
74 |
+
"effective": 5823
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"config": {
|
78 |
+
"model": "hf",
|
79 |
+
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
80 |
+
"model_num_parameters": 7455550464,
|
81 |
+
"model_dtype": "torch.bfloat16",
|
82 |
+
"model_revision": "main",
|
83 |
+
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
|
84 |
+
"batch_size": 1,
|
85 |
+
"batch_sizes": [],
|
86 |
+
"device": null,
|
87 |
+
"use_cache": null,
|
88 |
+
"limit": null,
|
89 |
+
"bootstrap_iters": 100000,
|
90 |
+
"gen_kwargs": null,
|
91 |
+
"random_seed": 0,
|
92 |
+
"numpy_seed": 1234,
|
93 |
+
"torch_seed": 1234,
|
94 |
+
"fewshot_seed": 1234
|
95 |
+
},
|
96 |
+
"git_hash": "b955b2950",
|
97 |
+
"date": 1739620722.9521024,
|
98 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
99 |
+
"transformers_version": "4.48.3",
|
100 |
+
"upper_git_hash": null,
|
101 |
+
"tokenizer_pad_token": [
|
102 |
+
"<|pad|>",
|
103 |
+
"2023"
|
104 |
+
],
|
105 |
+
"tokenizer_eos_token": [
|
106 |
+
"<|endoftext|>",
|
107 |
+
"11"
|
108 |
+
],
|
109 |
+
"tokenizer_bos_token": [
|
110 |
+
null,
|
111 |
+
"None"
|
112 |
+
],
|
113 |
+
"eot_token_id": 11,
|
114 |
+
"max_length": 32768,
|
115 |
+
"task_hashes": {
|
116 |
+
"moe_ien_tf": "ed81617ccb178d095c9a81fef15f5ba8b655782b26d36117f53c38b0a84e62e5"
|
117 |
+
},
|
118 |
+
"model_source": "hf",
|
119 |
+
"model_name": "tiiuae/Falcon3-7B-Instruct",
|
120 |
+
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
|
121 |
+
"system_instruction": null,
|
122 |
+
"system_instruction_sha": null,
|
123 |
+
"fewshot_as_multiturn": false,
|
124 |
+
"chat_template": "{%- if tools %}\n{{- '<|system|>\\n' }}\n{%- if messages[0]['role'] == 'system' %}\n{{- messages[0]['content'] }}\n{%- set remaining_messages = messages[1:] %}\n{%- else %}\n{%- set remaining_messages = messages %}\n{%- endif %}\n{{- 'You are a Falcon assistant skilled in function calling. You are helpful, respectful, and concise.\\n\\n# Tools\\n\\nYou have access to the following functions. You MUST use them to answer questions when needed. For each function call, you MUST return a JSON object inside <tool_call></tool_call> tags.\\n\\n<tools>' + tools|tojson(indent=2) + '</tools>\\n\\n# Output Format\\n\\nYour response MUST follow this format when making function calls:\\n<tool_call>\\n[\\n {\"name\": \"function_name\", \"arguments\": {\"arg1\": \"value1\", \"arg2\": \"value2\"}},\\n {\"name\": \"another_function\", \"arguments\": {\"arg\": \"value\"}}\\n]\\n</tool_call>\\nIf no function calls are needed, respond normally without the tool_call tags.\\n' }}\n{%- for message in remaining_messages %}\n{%- if message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if message.content %}\n{{- '<|assistant|>\\n' + message['content'] }}\n{%- endif %}\n{%- if message.tool_calls %}\n{{- '\\n<tool_call>\\n' }}\n{{- message.tool_calls|tojson(indent=2) }}\n{{- '\\n</tool_call>' }}\n{%- endif %}\n{{- eos_token + '\\n' }}\n{%- elif message['role'] == 'tool' %}\n{{- '<|assistant|>\\n<tool_response>\\n' + message['content'] + '\\n</tool_response>\\n' }}\n{%- endif %}\n{%- endfor %}\n{{- '<|assistant|>\\n' if add_generation_prompt }}\n{%- else %}\n{%- for message in messages %}\n{%- if message['role'] == 'system' %}\n{{- '<|system|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'user' %}\n{{- '<|user|>\\n' + message['content'] + '\\n' }}\n{%- elif message['role'] == 'assistant' %}\n{%- if not loop.last %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- '<|assistant|>\\n' + message['content'] + eos_token }}\n{%- endif %}\n{%- endif %}\n{%- if loop.last and add_generation_prompt %}\n{{- '<|assistant|>\\n' }}\n{%- endif %}\n{%- endfor %}\n{%- endif %}",
|
125 |
+
"chat_template_sha": "914ccd80356f5822d1a50d97546e37f60c04ed831fe431aa40346574ec266901",
|
126 |
+
"start_time": 1395406.00589162,
|
127 |
+
"end_time": 1395704.54657667,
|
128 |
+
"total_evaluation_time_seconds": "298.54068504995666"
|
129 |
+
}
|
evaluations/ar/Falcon3-7B-Instruct/openaimmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/Llama-3.3-70B-Instruct/acva_5_shot.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"acva": {
|
4 |
+
"alias": "acva",
|
5 |
+
"acc,none": 0.7847301951779564,
|
6 |
+
"acc_stderr,none": 0.004404205705558861,
|
7 |
+
"acc_norm,none": 0.769345579793341,
|
8 |
+
"acc_norm_stderr,none": 0.004513957617295361
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"acva": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"acva": {
|
16 |
+
"task": "acva",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"validation_split": "validation",
|
25 |
+
"test_split": "test",
|
26 |
+
"fewshot_split": "validation",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": false,
|
50 |
+
"metadata": {
|
51 |
+
"version": 1.0
|
52 |
+
}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"versions": {
|
56 |
+
"acva": 1.0
|
57 |
+
},
|
58 |
+
"n-shot": {
|
59 |
+
"acva": 5
|
60 |
+
},
|
61 |
+
"higher_is_better": {
|
62 |
+
"acva": {
|
63 |
+
"acc": true,
|
64 |
+
"acc_norm": true
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"n-samples": {
|
68 |
+
"acva": {
|
69 |
+
"original": 8710,
|
70 |
+
"effective": 8710
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"config": {
|
74 |
+
"model": "hf",
|
75 |
+
"model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
76 |
+
"model_num_parameters": 70553706496,
|
77 |
+
"model_dtype": "torch.bfloat16",
|
78 |
+
"model_revision": "main",
|
79 |
+
"model_sha": "6f6073b423013f6a7d4d9f39144961bfbfbc386b",
|
80 |
+
"batch_size": "auto",
|
81 |
+
"batch_sizes": [
|
82 |
+
64
|
83 |
+
],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "788a3672",
|
95 |
+
"date": 1737861513.0031924,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.1",
|
98 |
+
"upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091",
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<|finetune_right_pad_id|>",
|
101 |
+
"128004"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"<|eot_id|>",
|
105 |
+
"128009"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
"<|begin_of_text|>",
|
109 |
+
"128000"
|
110 |
+
],
|
111 |
+
"eot_token_id": 128009,
|
112 |
+
"max_length": 131072,
|
113 |
+
"task_hashes": {},
|
114 |
+
"model_source": "hf",
|
115 |
+
"model_name": "meta-llama/Llama-3.3-70B-Instruct",
|
116 |
+
"model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct",
|
117 |
+
"system_instruction": null,
|
118 |
+
"system_instruction_sha": null,
|
119 |
+
"fewshot_as_multiturn": false,
|
120 |
+
"chat_template": null,
|
121 |
+
"chat_template_sha": null,
|
122 |
+
"start_time": 822799.725415956,
|
123 |
+
"end_time": 824041.525682158,
|
124 |
+
"total_evaluation_time_seconds": "1241.8002662019571"
|
125 |
+
}
|
evaluations/ar/Llama-3.3-70B-Instruct/ar_ifeval_0_shot.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ar_ifeval": {
|
4 |
+
"alias": "ar_ifeval",
|
5 |
+
"prompt_level_strict_acc,none": 0.7089552238805971,
|
6 |
+
"prompt_level_strict_acc_stderr,none": 0.019638685568678992,
|
7 |
+
"inst_level_strict_acc,none": 0.8860068259385665,
|
8 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
9 |
+
"prompt_level_loose_acc,none": 0.7947761194029851,
|
10 |
+
"prompt_level_loose_acc_stderr,none": 0.017460611985170207,
|
11 |
+
"inst_level_loose_acc,none": 0.9208191126279863,
|
12 |
+
"inst_level_loose_acc_stderr,none": "N/A"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"group_subtasks": {
|
16 |
+
"ar_ifeval": []
|
17 |
+
},
|
18 |
+
"configs": {
|
19 |
+
"ar_ifeval": {
|
20 |
+
"task": "ar_ifeval",
|
21 |
+
"dataset_path": "lm_eval/tasks/ar_ifeval/ar_ifeval.py",
|
22 |
+
"dataset_name": "ar_ifeval",
|
23 |
+
"dataset_kwargs": {
|
24 |
+
"trust_remote_code": true
|
25 |
+
},
|
26 |
+
"test_split": "test",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": 0,
|
29 |
+
"process_results": "def process_results(doc, results):\n\n response = results[0]\n out_strict = process_sample(doc, response, 'strict')\n out_loose = process_sample(doc, response, 'loose')\n\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "prompt_level_strict_acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "inst_level_strict_acc",
|
42 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "prompt_level_loose_acc",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"metric": "inst_level_loose_acc",
|
52 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
53 |
+
"higher_is_better": true
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"output_type": "generate_until",
|
57 |
+
"generation_kwargs": {
|
58 |
+
"until": [],
|
59 |
+
"do_sample": false,
|
60 |
+
"temperature": 0.0,
|
61 |
+
"max_gen_toks": 1280
|
62 |
+
},
|
63 |
+
"repeats": 1,
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 4.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"ar_ifeval": 4.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"ar_ifeval": 0
|
75 |
+
},
|
76 |
+
"higher_is_better": {
|
77 |
+
"ar_ifeval": {
|
78 |
+
"prompt_level_strict_acc": true,
|
79 |
+
"inst_level_strict_acc": true,
|
80 |
+
"prompt_level_loose_acc": true,
|
81 |
+
"inst_level_loose_acc": true
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"n-samples": {
|
85 |
+
"ar_ifeval": {
|
86 |
+
"original": 536,
|
87 |
+
"effective": 536
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"config": {
|
91 |
+
"model": "hf",
|
92 |
+
"model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
93 |
+
"model_num_parameters": 70553706496,
|
94 |
+
"model_dtype": "torch.bfloat16",
|
95 |
+
"model_revision": "main",
|
96 |
+
"model_sha": "6f6073b423013f6a7d4d9f39144961bfbfbc386b",
|
97 |
+
"batch_size": 1,
|
98 |
+
"batch_sizes": [],
|
99 |
+
"device": null,
|
100 |
+
"use_cache": null,
|
101 |
+
"limit": null,
|
102 |
+
"bootstrap_iters": 100000,
|
103 |
+
"gen_kwargs": null,
|
104 |
+
"random_seed": 0,
|
105 |
+
"numpy_seed": 1234,
|
106 |
+
"torch_seed": 1234,
|
107 |
+
"fewshot_seed": 1234
|
108 |
+
},
|
109 |
+
"git_hash": "788a3672",
|
110 |
+
"date": 1738755018.193393,
|
111 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
112 |
+
"transformers_version": "4.48.2",
|
113 |
+
"upper_git_hash": null,
|
114 |
+
"tokenizer_pad_token": [
|
115 |
+
"<|finetune_right_pad_id|>",
|
116 |
+
"128004"
|
117 |
+
],
|
118 |
+
"tokenizer_eos_token": [
|
119 |
+
"<|eot_id|>",
|
120 |
+
"128009"
|
121 |
+
],
|
122 |
+
"tokenizer_bos_token": [
|
123 |
+
"<|begin_of_text|>",
|
124 |
+
"128000"
|
125 |
+
],
|
126 |
+
"eot_token_id": 128009,
|
127 |
+
"max_length": 131072,
|
128 |
+
"task_hashes": {
|
129 |
+
"ar_ifeval": "6bd5bfb26ee4f5909e16d66ee0e564fb2a5826815f16755272465c9e03f98a20"
|
130 |
+
},
|
131 |
+
"model_source": "hf",
|
132 |
+
"model_name": "meta-llama/Llama-3.3-70B-Instruct",
|
133 |
+
"model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct",
|
134 |
+
"system_instruction": null,
|
135 |
+
"system_instruction_sha": null,
|
136 |
+
"fewshot_as_multiturn": false,
|
137 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
138 |
+
"chat_template_sha": "e10ca381b1ccc5cf9db52e371f3b6651576caee0a630b452e2816b2d404d4b65",
|
139 |
+
"start_time": 744977.123888747,
|
140 |
+
"end_time": 758450.608805326,
|
141 |
+
"total_evaluation_time_seconds": "13473.484916579095"
|
142 |
+
}
|
evaluations/ar/Llama-3.3-70B-Instruct/araMath_v3_5_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araMath_v3": {
|
4 |
+
"alias": "araMath_v3",
|
5 |
+
"acc,none": 0.7090909090909091,
|
6 |
+
"acc_stderr,none": 0.01848039016780232,
|
7 |
+
"acc_norm,none": 0.7090909090909091,
|
8 |
+
"acc_norm_stderr,none": 0.01848039016780232
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araMath_v3": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araMath_v3": {
|
16 |
+
"task": "araMath_v3",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araMath_v3/araMath_v3.py",
|
21 |
+
"dataset_name": "araMath_v3",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "{{choices}}",
|
31 |
+
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"araMath_v3": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"araMath_v3": 5
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"araMath_v3": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"araMath_v3": {
|
70 |
+
"original": 605,
|
71 |
+
"effective": 605
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
77 |
+
"model_num_parameters": 70553706496,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "6f6073b423013f6a7d4d9f39144961bfbfbc386b",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "788a3672",
|
94 |
+
"date": 1738750317.5038416,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.2",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|finetune_right_pad_id|>",
|
100 |
+
"128004"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|eot_id|>",
|
104 |
+
"128009"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<|begin_of_text|>",
|
108 |
+
"128000"
|
109 |
+
],
|
110 |
+
"eot_token_id": 128009,
|
111 |
+
"max_length": 131072,
|
112 |
+
"task_hashes": {
|
113 |
+
"araMath_v3": "154ea94d6776e7d3980c98343cec49115ef3dc4dab8897fb4668f68494d55c76"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "meta-llama/Llama-3.3-70B-Instruct",
|
117 |
+
"model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
122 |
+
"chat_template_sha": "e10ca381b1ccc5cf9db52e371f3b6651576caee0a630b452e2816b2d404d4b65",
|
123 |
+
"start_time": 740276.643313964,
|
124 |
+
"end_time": 740434.169818474,
|
125 |
+
"total_evaluation_time_seconds": "157.5265045099659"
|
126 |
+
}
|
evaluations/ar/Llama-3.3-70B-Instruct/araPro_0_shot.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araPro": {
|
4 |
+
"alias": "araPro",
|
5 |
+
"acc,none": 0.7048590281943611,
|
6 |
+
"acc_stderr,none": 0.006450314388729491,
|
7 |
+
"acc_norm,none": 0.7048590281943611,
|
8 |
+
"acc_norm_stderr,none": 0.006450314388729491
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araPro": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araPro": {
|
16 |
+
"task": "araPro",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araPro/araPro.py",
|
21 |
+
"dataset_name": "araPro",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "{{choices}}",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": true,
|
54 |
+
"doc_to_decontamination_query": "Question",
|
55 |
+
"metadata": {
|
56 |
+
"version": 2.0
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"versions": {
|
61 |
+
"araPro": 2.0
|
62 |
+
},
|
63 |
+
"n-shot": {
|
64 |
+
"araPro": 0
|
65 |
+
},
|
66 |
+
"higher_is_better": {
|
67 |
+
"araPro": {
|
68 |
+
"acc": true,
|
69 |
+
"acc_norm": true
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"n-samples": {
|
73 |
+
"araPro": {
|
74 |
+
"original": 5001,
|
75 |
+
"effective": 5001
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"config": {
|
79 |
+
"model": "hf",
|
80 |
+
"model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
81 |
+
"model_num_parameters": 70553706496,
|
82 |
+
"model_dtype": "torch.bfloat16",
|
83 |
+
"model_revision": "main",
|
84 |
+
"model_sha": "6f6073b423013f6a7d4d9f39144961bfbfbc386b",
|
85 |
+
"batch_size": 1,
|
86 |
+
"batch_sizes": [],
|
87 |
+
"device": null,
|
88 |
+
"use_cache": null,
|
89 |
+
"limit": null,
|
90 |
+
"bootstrap_iters": 100000,
|
91 |
+
"gen_kwargs": null,
|
92 |
+
"random_seed": 0,
|
93 |
+
"numpy_seed": 1234,
|
94 |
+
"torch_seed": 1234,
|
95 |
+
"fewshot_seed": 1234
|
96 |
+
},
|
97 |
+
"git_hash": "788a3672",
|
98 |
+
"date": 1738742514.712935,
|
99 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
100 |
+
"transformers_version": "4.48.2",
|
101 |
+
"upper_git_hash": null,
|
102 |
+
"tokenizer_pad_token": [
|
103 |
+
"<|finetune_right_pad_id|>",
|
104 |
+
"128004"
|
105 |
+
],
|
106 |
+
"tokenizer_eos_token": [
|
107 |
+
"<|eot_id|>",
|
108 |
+
"128009"
|
109 |
+
],
|
110 |
+
"tokenizer_bos_token": [
|
111 |
+
"<|begin_of_text|>",
|
112 |
+
"128000"
|
113 |
+
],
|
114 |
+
"eot_token_id": 128009,
|
115 |
+
"max_length": 131072,
|
116 |
+
"task_hashes": {
|
117 |
+
"araPro": "ab4849e5668de72a27844a2a354787cbce92af5027f46a32300417b41913c5db"
|
118 |
+
},
|
119 |
+
"model_source": "hf",
|
120 |
+
"model_name": "meta-llama/Llama-3.3-70B-Instruct",
|
121 |
+
"model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct",
|
122 |
+
"system_instruction": null,
|
123 |
+
"system_instruction_sha": null,
|
124 |
+
"fewshot_as_multiturn": false,
|
125 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
126 |
+
"chat_template_sha": "e10ca381b1ccc5cf9db52e371f3b6651576caee0a630b452e2816b2d404d4b65",
|
127 |
+
"start_time": 732473.787962617,
|
128 |
+
"end_time": 736407.61692168,
|
129 |
+
"total_evaluation_time_seconds": "3933.8289590630447"
|
130 |
+
}
|
evaluations/ar/Llama-3.3-70B-Instruct/arabicmmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations/ar/Llama-3.3-70B-Instruct/etec_v2_0_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"etec_v2": {
|
4 |
+
"alias": "etec_v2",
|
5 |
+
"acc,none": 0.6883942766295708,
|
6 |
+
"acc_stderr,none": 0.010664745454850943,
|
7 |
+
"acc_norm,none": 0.6883942766295708,
|
8 |
+
"acc_norm_stderr,none": 0.010664745454850943
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"etec_v2": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"etec_v2": {
|
16 |
+
"task": "etec_v2",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/etec_v2/etec.py",
|
21 |
+
"dataset_name": "etec_v2",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n print(doc[\"label\"])\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": int(doc[\"label\"])-1,\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 0,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"etec_v2": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"etec_v2": 0
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"etec_v2": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"etec_v2": {
|
70 |
+
"original": 1887,
|
71 |
+
"effective": 1887
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
|
77 |
+
"model_num_parameters": 70553706496,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "6f6073b423013f6a7d4d9f39144961bfbfbc386b",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "788a3672",
|
94 |
+
"date": 1738746708.9926562,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.2",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<|finetune_right_pad_id|>",
|
100 |
+
"128004"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"<|eot_id|>",
|
104 |
+
"128009"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<|begin_of_text|>",
|
108 |
+
"128000"
|
109 |
+
],
|
110 |
+
"eot_token_id": 128009,
|
111 |
+
"max_length": 131072,
|
112 |
+
"task_hashes": {
|
113 |
+
"etec_v2": "f9810ea40ab4721486631d02578e3b62811871d66f80ee350dc574ca63d72e12"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "meta-llama/Llama-3.3-70B-Instruct",
|
117 |
+
"model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
122 |
+
"chat_template_sha": "e10ca381b1ccc5cf9db52e371f3b6651576caee0a630b452e2816b2d404d4b65",
|
123 |
+
"start_time": 736668.210182346,
|
124 |
+
"end_time": 736927.122919428,
|
125 |
+
"total_evaluation_time_seconds": "258.9127370819915"
|
126 |
+
}
|