File size: 3,519 Bytes
6928048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: apache-2.0
datasets:
- HuggingFaceH4/ultrafeedback_binarized
base_model:
- AIR-hl/Qwen2.5-1.5B-ultrachat200k
pipeline_tag: text-generation
tags:
- trl
- qwen
- simpo
- alignment
- transformers
- custome
- chat
---
# Qwen2.5-1.5B-SimPO


## Model Details

- **Model type:** aligned model
- **License:** Apache license 2.0
- **Finetuned from model:** [AIR-hl/Qwen2.5-1.5B-ultrachat200k](https://huggingface.co/AIR-hl/Qwen2.5-1.5B-ultrachat200k)
- **Training data:** [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- **Training framework:** [trl](https://github.com/huggingface/trl)

## Training Details

devices: 4 * NPU 910B-64GB \
precision: bf16 mixed-precision \
global_batch_size: 128

### Training Hyperparameters
`beta`: 1 \
`gamma`: 0.1 \
`bf16`: True \
`learning_rate`: 1e-6 \
`lr_scheduler_type`: cosine \
`per_device_train_batch_size`: 16 \
`gradient_accumulation_steps`: 2 \
`torch_dtype`: bfloat16 \
`num_train_epochs`: 1 \
`max_prompt_length`: 512 \
`max_length`: 1024 \
`warmup_ratio`: 0.05

### Results

`init_train_loss`: 0.7551 \
`final_train_loss`: 0.6715 \
`accuracy`: 0.6375 \
`reward_margin`: 0.3633

### Training script

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import (
    CPOConfig,
    CPOTrainer,
    ModelConfig,
    ScriptArguments,
    TrlParser,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE

if __name__ == "__main__":
    parser = TrlParser((ScriptArguments, CPOConfig, ModelConfig))
    script_args, training_args, model_config = parser.parse_args_and_config()

    torch_dtype = (
        model_config.torch_dtype
        if model_config.torch_dtype in ["auto", None]
        else getattr(torch, model_config.torch_dtype)
    )

    quantization_config = get_quantization_config(model_config)

    model_kwargs = dict(
        revision=model_config.model_revision,
        attn_implementation=model_config.attn_implementation,
        torch_dtype=torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )

    model = AutoModelForCausalLM.from_pretrained(
        model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
    )

    peft_config = get_peft_config(model_config)

    tokenizer = AutoTokenizer.from_pretrained(
        model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    if tokenizer.chat_template is None:
        tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
    if script_args.ignore_bias_buffers:
        model._ddp_params_and_buffers_to_ignore = [
            name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
        ]

    dataset=load_dataset(script_args.dataset_name,
                         split=script_args.dataset_train_split)
    dataset=dataset.select_columns(['prompt', 'chosen', 'rejected'])

    trainer = CPOTrainer(
        model,
        args=training_args,
        train_dataset=dataset,
        processing_class=tokenizer,
        peft_config=peft_config,
    )

    trainer.train()

    trainer.save_model(training_args.output_dir)
```