Ovis2.5-9B / modeling_ovis2_5.py
xxyyy123's picture
Add files using upload-large-folder tool
2fb64dd verified
import math
from typing import Dict, List, Optional, Tuple, Union
import PIL.Image
import numpy as np
import torch
from flash_attn import flash_attn_varlen_func
from flash_attn.layers.rotary import apply_rotary_emb
from torch import Tensor, nn
from torch.nn import functional as F
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers.activations import ACT2FN
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
from transformers.modeling_utils import PreTrainedModel
from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config
IMAGE_PLACEHOLDER = "<image>"
IMAGE_PLACEHOLDER_ID = -200
VIDEO_PLACEHOLDER = "<video>"
VIDEO_PLACEHOLDER_ID = -201
VISUAL_ATOM_ID = -300
INDICATOR_IDS = [-301, -302, -303, -304]
# copied from qwen2.5-vl
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Siglip2VisionEmbeddings(nn.Module):
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.image_size = config.image_size
self.num_patches = config.num_patches
self.preserve_original_pe = config.preserve_original_pe
self.hidden_stride = config.hidden_stride
# siglip2 naflex
if self.num_patches > 0:
self.patch_embedding = nn.Linear(
in_features=config.num_channels * self.patch_size * self.patch_size,
out_features=self.embed_dim,
)
if self.preserve_original_pe:
self.position_embedding_size = int(self.num_patches**0.5)
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
else:
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
if self.preserve_original_pe:
self.num_patches = (self.image_size // self.patch_size) ** 2
self.position_embedding_size = self.image_size // self.patch_size
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
@staticmethod
def resize_positional_embeddings(
positional_embeddings: torch.Tensor,
spatial_shapes: torch.LongTensor,
max_length: int,
) -> torch.Tensor:
"""
Resize positional embeddings to image-specific size and pad to a fixed size.
Args:
positional_embeddings (`torch.Tensor`):
Position embeddings of shape (height, width, embed_dim)
spatial_shapes (`torch.LongTensor`):
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
max_length (`int`):
Maximum length of the positional embeddings to pad resized positional embeddings to
Returns:
`torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
"""
batch_size = spatial_shapes.shape[0]
embed_dim = positional_embeddings.shape[-1]
source_dtype = positional_embeddings.dtype
resulted_positional_embeddings = torch.empty(
(batch_size, max_length, embed_dim),
device=positional_embeddings.device,
dtype=source_dtype,
)
# (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0)
# Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
if positional_embeddings.device.type == "cpu":
positional_embeddings = positional_embeddings.to(torch.float32)
for i in range(batch_size):
# (1, dim, height, width) -> (1, dim, target_height, target_width)
height, width = spatial_shapes[i]
resized_embeddings = F.interpolate(
positional_embeddings,
size=(height, width),
mode="bilinear",
align_corners=False,
antialias=True,
)
# (1, dim, target_height, target_width) -> (target_height * target_width, dim)
resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1)
# Cast to original dtype
resized_embeddings = resized_embeddings.to(source_dtype)
resulted_positional_embeddings[i, : height * width] = resized_embeddings
resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
return resulted_positional_embeddings
def forward(self, pixel_values: torch.FloatTensor,
grid_thws: Optional[torch.LongTensor] = None) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor`):
Pixel values of shape (num_patches, num_channels * temporal_patch_size * patch_size * patch_size)
grid_thws: (`torch.LongTensor`):
grid shape (num_patches, 3)
"""
# Apply patch embeddings to already patchified pixel values
target_dtype = self.patch_embedding.weight.dtype
if isinstance(self.patch_embedding, nn.Linear):
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
elif isinstance(self.patch_embedding, nn.Conv2d):
pixel_values = pixel_values.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.patch_size,
self.patch_size)
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
patch_embeds = patch_embeds.reshape(-1, self.embed_dim)
if self.preserve_original_pe:
assert grid_thws is not None
pos_embed_new = torch.zeros_like(patch_embeds)
ori_h = ori_w = self.position_embedding_size
positional_embeddings = self.position_embedding.weight.reshape(
self.position_embedding_size, self.position_embedding_size, -1
).unsqueeze(0).permute(0,3,1,2)
# pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2)
cnt = 0
for t, h, w in grid_thws:
thw = t * h * w
pe = F.interpolate(positional_embeddings, size=(h, w), mode='bicubic', align_corners=False)
pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1)
pe = pe[0].repeat(t, 1)
pe = pe.reshape(t, h // self.hidden_stride, self.hidden_stride, w // self.hidden_stride,
self.hidden_stride, -1)
pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(thw, -1)
pos_embed_new[cnt:cnt + thw] = pe
cnt += thw
patch_embeds = patch_embeds + pos_embed_new
return patch_embeds
# copied from qwen2.5-vl
def apply_rotary_pos_emb_flashatt(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
cos = cos.chunk(2, dim=-1)[0].contiguous()
sin = sin.chunk(2, dim=-1)[0].contiguous()
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
return q_embed, k_embed
class Siglip2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.use_rope = config.use_rope
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(seq_length, self.num_heads, self.head_dim)
keys = keys.view(seq_length, self.num_heads, self.head_dim)
values = values.view(seq_length, self.num_heads, self.head_dim)
if self.use_rope:
cos, sin = position_embeddings
queries, keys = apply_rotary_pos_emb_flashatt(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin)
queries = queries.squeeze(0)
keys = keys.squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
attn_output = flash_attn_varlen_func(queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
seq_length, -1
)
attn_output = self.out_proj(attn_output)
return attn_output
class Siglip2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Siglip2EncoderLayer(nn.Module):
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = Siglip2Attention(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Siglip2MLP(config)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: torch.Tensor
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Siglip2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Siglip2EncoderLayer`].
Args:
config: Siglip2NavitConfig
"""
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
self.patch_size = config.patch_size
self.hidden_stride = config.hidden_stride
self.window_size = config.window_size
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
self.fullatt_block_indexes = None if config.fullatt_block_indexes is None else [int(i) for i in config.fullatt_block_indexes.split('|')]
# copied from qwen2.5_vl
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size # patch (after merge) number in each window
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.hidden_stride, # number of patch after merge
grid_w // self.hidden_stride,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
# Ignore copy
def forward(
self,
inputs_embeds,
grid_thws: torch.Tensor,
output_hidden_states: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
rotary_pos_emb = self.rot_pos_emb(grid_thws)
window_index, cu_window_seqlens = self.get_window_index(grid_thws)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=inputs_embeds.device,
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = inputs_embeds.size()
inputs_embeds = inputs_embeds.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
inputs_embeds = inputs_embeds[window_index, :, :]
inputs_embeds = inputs_embeds.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
reverse_indices = torch.argsort(window_index)
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for index, block in enumerate(self.layers):
if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes:
cu_seqlens_tmp = cu_seqlens
else:
cu_seqlens_tmp = cu_window_seqlens
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(block.__call__, hidden_states, cu_seqlens_tmp, position_embeddings)
else:
hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings)
if output_hidden_states:
hidden_states_ = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
encoder_states += (hidden_states_[reverse_indices, :].reshape(seq_len, -1),)
# tokens = self.post_trunk_norm(tokens)
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1)
return hidden_states, encoder_states
class Siglip2VisionTransformer(nn.Module):
def __init__(self, config: Siglip2NavitConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Siglip2VisionEmbeddings(config)
self.encoder = Siglip2Encoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor,
output_hidden_states: Optional[bool] = True,
return_dict: Optional[bool] = True,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
BaseModelOutputWithNoAttention,
]:
r"""
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
"""
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
# output_hidden_states = (
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
# )
hidden_states = self.embeddings(pixel_values, grid_thws)
last_hidden_state, hidden_states = self.encoder(hidden_states, grid_thws, output_hidden_states)
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
output = (last_hidden_state,)
output += (hidden_states,) if output_hidden_states else ()
return output
return BaseModelOutputWithNoAttention(
last_hidden_state=last_hidden_state,
hidden_states=hidden_states
)
class Siglip2PreTrainedModel(PreTrainedModel):
config_class = Siglip2NavitConfig
base_model_prefix = "siglip2_navit"
supports_gradient_checkpointing = True
_no_split_modules = [
"Siglip2VisionEmbeddings",
"Siglip2EncoderLayer",
]
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_flex_attn = False
_supports_attention_backend = True
class Siglip2NavitModel(Siglip2PreTrainedModel):
config_class = Siglip2NavitConfig
main_input_name = "pixel_values"
def __init__(self, config: Siglip2NavitConfig):
super().__init__(config)
self.vision_model = Siglip2VisionTransformer(config)
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
BaseModelOutputWithNoAttention,
]:
if output_hidden_states is None:
output_hidden_states = self.config.output_hidden_states
if return_dict is None:
return_dict = self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
grid_thws=grid_thws,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class VisualEmbedding(torch.nn.Embedding):
"""
A visual embedding layer that can handle both discrete token IDs (long) and continuous
soft-token probabilities (float).
"""
def forward(self, visual_tokens: Tensor) -> Tensor:
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
return super().forward(visual_tokens)
# Handle soft tokens (probabilities) by matrix multiplication with the embedding weight
return torch.matmul(visual_tokens, self.weight)
class VisualTokenizer(torch.nn.Module):
"""
Tokenizes images or videos into a sequence of continuous visual tokens.
"""
def __init__(self, vit, visual_vocab_size, image_processor_name_or_path, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vit = vit
self.image_processor = AutoImageProcessor.from_pretrained(image_processor_name_or_path, do_center_crop=False)
head_dim = visual_vocab_size - len(INDICATOR_IDS)
self.head = torch.nn.Sequential(
torch.nn.Linear(self.vit.config.hidden_size * self.vit.config.hidden_stride ** 2, head_dim, bias=False),
torch.nn.LayerNorm(head_dim)
)
def _encode(self, pixel_values, grid_thws):
output = self.vit(pixel_values, grid_thws, output_hidden_states=True, return_dict=True)
features = output.hidden_states[-1]
seq_len, _ = features.shape
features = features.reshape(seq_len // (self.vit.config.hidden_stride ** 2), -1)
return features
# Adapted from qwen2_vl
@staticmethod
def smart_resize(
height: int, width: int, factor: int = 28, min_pixels: int = 448 * 448, max_pixels: int = 1344 * 1792
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions are divisible by 'factor'.
2. The total number of pixels is within ['min_pixels', 'max_pixels'].
3. The aspect ratio is maintained as closely as possible.
"""
if height < factor or width < factor:
if height < width:
width = round(factor / height * width)
height = factor
else:
height = round(factor / width * height)
width = factor
elif max(height, width) / min(height, width) > 200:
if height > width:
height = 200 * width
else:
width = 200 * height
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
def preprocess(
self,
image: Optional[PIL.Image.Image] = None,
video: Optional[List[PIL.Image.Image]] = None,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None
):
patch_size = self.vit.config.patch_size
temporal_patch_size = self.vit.config.temporal_patch_size
hidden_stride = self.vit.config.hidden_stride
assert (image is None) ^ (video is None), "Invalid input: expect either image or video"
if image is not None:
images = [image]
else:
images = video
images = [image.convert("RGB") if image.mode != 'RGB' else image for image in images]
width, height = images[0].size
processed_images = []
for image in images:
resized_height, resized_width = self.smart_resize(
height,
width,
factor=patch_size * hidden_stride,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
new_size = dict(height=resized_height, width=resized_width)
new_image = self.image_processor.preprocess(image, size=new_size, return_tensors="np")['pixel_values'][0]
processed_images.append(new_image)
patches = np.array(processed_images)
if patches.shape[0] % temporal_patch_size != 0:
repeats = np.repeat(patches[-1][np.newaxis], temporal_patch_size - 1, axis=0)
patches = np.concatenate([patches, repeats], axis=0)
channel = patches.shape[1]
grid_t = patches.shape[0] // temporal_patch_size
grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
grid_thw = torch.tensor([[grid_t, grid_h, grid_w]])
patches = patches.reshape(
grid_t, temporal_patch_size, channel,
grid_h // hidden_stride, hidden_stride, patch_size,
grid_w // hidden_stride, hidden_stride, patch_size,
)
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size
)
flatten_patches = torch.tensor(flatten_patches)
return flatten_patches, grid_thw
def forward(
self, pixel_values, grid_thws
) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
features = self._encode(pixel_values, grid_thws)
logits = self.head(features)
tokens = torch.softmax(logits, dim=-1, dtype=torch.float32).to(logits.dtype)
token_len, _ = tokens.shape
padding_tensor = torch.zeros(size=(token_len, len(INDICATOR_IDS)),
dtype=tokens.dtype,
device=tokens.device,
layout=tokens.layout,
requires_grad=False)
tokens = torch.cat((tokens, padding_tensor), dim=1)
return tokens
class OvisPreTrainedModel(PreTrainedModel):
config_class = Ovis2_5_Config
base_model_prefix = "ovis2_5"
class Ovis2_5(OvisPreTrainedModel):
_supports_flash_attn_2 = True
def __init__(self, config: Ovis2_5_Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
self.visual_tokenizer = VisualTokenizer(vit=AutoModel.from_config(self.config.vit_config),
visual_vocab_size=self.config.visual_vocab_size,
image_processor_name_or_path=self.config.name_or_path)
self.vte = VisualEmbedding(self.config.visual_vocab_size, self.config.hidden_size,
device=self.visual_tokenizer.vit.device, dtype=self.visual_tokenizer.vit.dtype)
indicator_token_indices = torch.arange(
self.config.visual_vocab_size - len(INDICATOR_IDS),
self.config.visual_vocab_size,
dtype=torch.long
)
self.register_buffer("indicator_token_indices", indicator_token_indices, persistent=False)
def _merge_modules(modules_list: tuple):
merged_modules = []
for modules in modules_list:
merged_modules.extend(modules if modules else [])
return merged_modules
# Standard model configurations for parallelism and device placement
self._no_split_modules = _merge_modules(
(self.llm._no_split_modules, self.visual_tokenizer.vit._no_split_modules))
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
self._keep_in_fp32_modules = _merge_modules(
(self.llm._keep_in_fp32_modules, self.visual_tokenizer.vit._keep_in_fp32_modules))
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.vit.is_parallelizable))
self.supports_gradient_checkpointing = True
def tie_weights(self):
self.llm.tie_weights()
def get_wte(self):
return self.llm.get_input_embeddings()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
pixel_values: Optional[torch.Tensor],
grid_thws: Optional[torch.Tensor],
labels: Optional[torch.Tensor] = None,
**kwargs
):
inputs_embeds = self.merge_multimodal(
input_ids=input_ids,
pixel_values=pixel_values,
grid_thws=grid_thws,
)
return self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
def merge_multimodal(
self,
input_ids: torch.Tensor,
pixel_values: Optional[torch.Tensor],
grid_thws: Optional[torch.Tensor],
):
placeholder_token_mask = torch.lt(input_ids, 0)
multimodal_embeds = self.get_wte()(torch.masked_fill(input_ids, placeholder_token_mask, 0))
if pixel_values is not None:
visual_indicator_embeds = self.vte(self.indicator_token_indices).to(
dtype=multimodal_embeds.dtype, device=multimodal_embeds.device
)
visual_tokens = self.visual_tokenizer(pixel_values, grid_thws)
visual_embeds = self.vte(visual_tokens).to(dtype=multimodal_embeds.dtype, device=multimodal_embeds.device)
for i, indicator_id in enumerate(INDICATOR_IDS):
multimodal_embeds[input_ids == indicator_id] = visual_indicator_embeds[i]
multimodal_embeds[input_ids == VISUAL_ATOM_ID] = visual_embeds
return multimodal_embeds
def _merge_inputs(
self, raw_input_ids, placeholder_id, grid_thws, indicator_begin_id, indicator_end_id
):
input_ids = []
prev_index = 0
placeholder_indexes = [i for i, v in enumerate(raw_input_ids) if v == placeholder_id]
for placeholder_index, grid_thw in zip(placeholder_indexes, grid_thws):
input_ids.extend(raw_input_ids[prev_index:placeholder_index])
num_image_atoms = grid_thw.prod().item()
num_image_atoms //= self.visual_tokenizer.vit.config.hidden_stride ** 2
num_image_atoms //= self.visual_tokenizer.vit.config.temporal_patch_size
input_ids.extend([indicator_begin_id] + [VISUAL_ATOM_ID] * num_image_atoms + [indicator_end_id])
prev_index = placeholder_index + 1
input_ids.extend(raw_input_ids[prev_index:])
return input_ids
def _tokenize_with_visual_placeholder(self, text):
placeholder = VIDEO_PLACEHOLDER if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER
placeholder_id = VIDEO_PLACEHOLDER_ID if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER_ID
chunks = [self.text_tokenizer(chunk, add_special_tokens=False).input_ids for chunk in text.split(placeholder)]
input_ids = chunks[0]
for chunk in chunks[1:]:
input_ids.append(placeholder_id)
input_ids.extend(chunk)
return input_ids
def preprocess_inputs(
self,
messages: List[Union[str, Dict]],
min_pixels=448 * 448,
max_pixels=1792 * 1792,
add_generation_prompt=True,
enable_thinking=False
):
text = self.text_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=add_generation_prompt,
enable_thinking=enable_thinking
)
input_ids = self._tokenize_with_visual_placeholder(text)
images = []
videos = []
for message in messages:
content = message["content"]
if isinstance(content, list):
images.extend([item["image"] for item in content if item.get("image") is not None])
videos.extend([item["video"] for item in content if item.get("video") is not None])
if images and videos:
raise ValueError(
"Multiple visual input data types detected (both image and video provided). "
"This model supports only one type of visual input data at a time. "
"Please provide either image or video, but not both."
)
pixel_values, grid_thws = None, None
if images:
pixel_values, grid_thws = zip(
*(self.visual_tokenizer.preprocess(image=image, min_pixels=min_pixels, max_pixels=max_pixels)
for image in images)
)
input_ids = self._merge_inputs(
input_ids, IMAGE_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[0], INDICATOR_IDS[1]
)
pixel_values = torch.cat(pixel_values, dim=0)
grid_thws = torch.cat(grid_thws, dim=0)
elif videos:
assert len(videos) == 1, "only support single video"
pixel_values, grid_thws = self.visual_tokenizer.preprocess(
video=videos[0], min_pixels=min_pixels, max_pixels=max_pixels
)
input_ids = self._merge_inputs(
input_ids, VIDEO_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[2], INDICATOR_IDS[3]
)
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
return input_ids, pixel_values, grid_thws
def generate(
self,
inputs: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
attention_mask = torch.ne(inputs, self.text_tokenizer.pad_token_id).to(device=inputs.device)
inputs_embeds = self.merge_multimodal(
input_ids=inputs,
pixel_values=kwargs.pop('pixel_values', None),
grid_thws=kwargs.pop('grid_thws', None)
)
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
AutoConfig.register('siglip2_navit', Siglip2NavitConfig)
AutoModel.register(Siglip2NavitConfig, Siglip2NavitModel)
AutoConfig.register("ovis2_5", Ovis2_5_Config)
AutoModelForCausalLM.register(Ovis2_5_Config, Ovis2_5)