File size: 49,961 Bytes
f304131 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 |
from typing import Optional, Callable
import math
from dataclasses import dataclass
import collections.abc
from itertools import repeat as iter_repeat
import numpy as np
import torch
from torch import Tensor, nn
import torchvision
from torchvision import transforms
from diffusers import AutoencoderKL
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.nn import functional as F
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput
from einops import rearrange, repeat
from .configuration_yak import YakConfig
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
x = tuple(x)
if len(x) == 1:
x = tuple(iter_repeat(x[0], n))
return x
return tuple(iter_repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
def as_tuple(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
if x is None or isinstance(x, (int, float, str)):
return (x,)
else:
raise ValueError(f"Unknown type {type(x)}")
def as_list_of_2tuple(x):
x = as_tuple(x)
if len(x) == 1:
x = (x[0], x[0])
assert len(x) % 2 == 0, f"Expect even length, got {len(x)}."
lst = []
for i in range(0, len(x), 2):
lst.append((x[i], x[i + 1]))
return lst
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor=None, attn_mask=None) -> Tensor:
if pe is None:
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = rearrange(x, "B H L D -> B L (H D)")
else:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, scale_factor=1.0, eps:float=1e-6):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim) * scale_factor)
self.eps = eps
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class TriModulation(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.multiplier = 9
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:6]),
ModulationOut(*out[6:]),
)
# from https://huggingface.co/stabilityai/stable-diffusion-3.5-medium
class DoubleStreamXBlockProcessor:
def __call__(self, attn, img, txt, vec, pe, **attention_kwargs):
img_mod1, img_mod2, img_mod3 = attn.img_mod(vec)
txt_mod1, txt_mod2 = attn.txt_mod(vec)
# prepare image for attention
img_modulated = attn.img_norm1(img)
img_cos_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = attn.img_attn.qkv(img_cos_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
# prepare image for self-attention
img_self_modulated = (1 + img_mod3.scale) * img_modulated + img_mod3.shift
img_self_qkv = attn.img_self_attn.qkv(img_self_modulated)
img_self_q, img_self_k, img_self_v = rearrange(img_self_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
img_self_q, img_self_k = attn.img_self_attn.norm(img_self_q, img_self_k, img_self_v)
txt_pe, img_pe = torch.split(pe, [txt.shape[1], img.shape[1]], dim=2)
img_self_attn = attention(img_self_q, img_self_k, img_self_v, pe=img_pe)
# prepare txt for attention
txt_modulated = attn.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = attn.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn1 = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
img = img + img_mod3.gate * attn.img_self_attn.proj(img_self_attn)
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class DoubleStreamXBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = TriModulation(hidden_size)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_self_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
processor = DoubleStreamXBlockProcessor()
self.set_processor(processor)
def set_processor(self, processor) -> None:
self.processor = processor
def get_processor(self):
return self.processor
def forward(
self,
img: Tensor,
txt: Tensor,
vec: Tensor,
pe: Tensor,
image_proj: Tensor = None,
ip_scale: float =1.0,
) -> tuple[Tensor, Tensor]:
if image_proj is None:
return self.processor(self, img, txt, vec, pe)
else:
return self.processor(self, img, txt, vec, pe, image_proj, ip_scale)
class SingleStreamBlockProcessor:
def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = attn.modulation(vec)
x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
q, k = attn.norm(q, k, v)
# compute attention
attn_1 = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
output = x + mod.gate * output
return output
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
processor = SingleStreamBlockProcessor()
self.set_processor(processor)
def set_processor(self, processor) -> None:
self.processor = processor
def get_processor(self):
return self.processor
def forward(
self,
x: Tensor,
vec: Tensor,
pe: Tensor,
image_proj: Tensor | None = None,
ip_scale: float = 1.0
) -> Tensor:
if image_proj is None:
return self.processor(self, x, vec, pe)
else:
return self.processor(self, x, vec, pe, image_proj, ip_scale)
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
def get_norm_layer(norm_layer):
"""
Get the normalization layer.
Args:
norm_layer (str): The type of normalization layer.
Returns:
norm_layer (nn.Module): The normalization layer.
"""
if norm_layer == "layer":
return nn.LayerNorm
elif norm_layer == "rms":
return RMSNorm
else:
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
def get_activation_layer(act_type):
"""get activation layer
Args:
act_type (str): the activation type
Returns:
torch.nn.functional: the activation layer
"""
if act_type == "gelu":
return lambda: nn.GELU()
elif act_type == "gelu_tanh":
# Approximate `tanh` requires torch >= 1.13
return lambda: nn.GELU(approximate="tanh")
elif act_type == "relu":
return nn.ReLU
elif act_type == "silu":
return nn.SiLU
else:
raise ValueError(f"Unknown activation type: {act_type}")
def modulate(x, shift=None, scale=None):
"""modulate by shift and scale
Args:
x (torch.Tensor): input tensor.
shift (torch.Tensor, optional): shift tensor. Defaults to None.
scale (torch.Tensor, optional): scale tensor. Defaults to None.
Returns:
torch.Tensor: the output tensor after modulate.
"""
if scale is None and shift is None:
return x
elif shift is None:
return x * (1 + scale.unsqueeze(1))
elif scale is None:
return x + shift.unsqueeze(1)
else:
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def apply_gate(x, gate=None, tanh=False):
"""AI is creating summary for apply_gate
Args:
x (torch.Tensor): input tensor.
gate (torch.Tensor, optional): gate tensor. Defaults to None.
tanh (bool, optional): whether to use tanh function. Defaults to False.
Returns:
torch.Tensor: the output tensor after apply gate.
"""
if gate is None:
return x
if tanh:
return x * gate.unsqueeze(1).tanh()
else:
return x * gate.unsqueeze(1)
class MLP(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_channels,
hidden_channels=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=None,
bias=True,
drop=0.0,
use_conv=False,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
out_features = out_features or in_channels
hidden_channels = hidden_channels or in_channels
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(
in_channels, hidden_channels, bias=bias[0], **factory_kwargs
)
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = (
norm_layer(hidden_channels, **factory_kwargs)
if norm_layer is not None
else nn.Identity()
)
self.fc2 = linear_layer(
hidden_channels, out_features, bias=bias[1], **factory_kwargs
)
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.norm(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class TextProjection(nn.Module):
"""
Projects text embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_channels, hidden_size, act_layer):
super().__init__()
self.linear_1 = nn.Linear(
in_features=in_channels,
out_features=hidden_size,
bias=True,
)
self.act_1 = act_layer()
self.linear_2 = nn.Linear(
in_features=hidden_size,
out_features=hidden_size,
bias=True,
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
def timestep_embedding_refiner(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
Args:
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
dim (int): the dimension of the output.
max_period (int): controls the minimum frequency of the embeddings.
Returns:
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(
self,
hidden_size,
act_layer,
frequency_embedding_size=256,
max_period=10000,
out_size=None,
):
super().__init__()
self.frequency_embedding_size = frequency_embedding_size
self.max_period = max_period
if out_size is None:
out_size = hidden_size
self.mlp = nn.Sequential(
nn.Linear(
frequency_embedding_size, hidden_size, bias=True,
),
act_layer(),
nn.Linear(hidden_size, out_size, bias=True, ),
)
nn.init.normal_(self.mlp[0].weight, std=0.02)
nn.init.normal_(self.mlp[2].weight, std=0.02)
def forward(self, t):
t_freq = timestep_embedding_refiner(
t, self.frequency_embedding_size, self.max_period
).type(self.mlp[0].weight.dtype)
t_emb = self.mlp(t_freq)
return t_emb
class IndividualTokenRefinerBlock(nn.Module):
def __init__(
self,
hidden_size,
heads_num,
mlp_width_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
):
super().__init__()
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6,
)
self.self_attn_qkv = nn.Linear(
hidden_size, hidden_size * 3, bias=qkv_bias,
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.self_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, )
if qk_norm
else nn.Identity()
)
self.self_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, )
if qk_norm
else nn.Identity()
)
self.self_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias,
)
self.norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6,
)
act_layer = get_activation_layer(act_type)
self.mlp = MLP(
in_channels=hidden_size,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop_rate,
)
self.adaLN_modulation = nn.Sequential(
act_layer(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True, ),
)
# Zero-initialize the modulation
nn.init.zeros_(self.adaLN_modulation[1].weight)
nn.init.zeros_(self.adaLN_modulation[1].bias)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
attn_mask: torch.Tensor = None,
):
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn_qkv(norm_x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
# Apply QK-Norm if needed
q = self.self_attn_q_norm(q).to(v)
k = self.self_attn_k_norm(k).to(v)
# Self-Attention
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
attn = attention(q, k, v, attn_mask=attn_mask)
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
# FFN Layer
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
return x
class CrossTokenRefinerBlock(nn.Module):
def __init__(
self,
hidden_size,
heads_num,
mlp_width_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
):
super().__init__()
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6,
)
self.self_attn_q = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias,
)
self.norm_y = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6,
)
self.self_attn_kv = nn.Linear(
hidden_size, hidden_size*2, bias=qkv_bias,
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.self_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, )
if qk_norm
else nn.Identity()
)
self.self_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, )
if qk_norm
else nn.Identity()
)
self.self_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias,
)
self.norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6,
)
act_layer = get_activation_layer(act_type)
self.mlp = MLP(
in_channels=hidden_size,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop_rate,
)
self.adaLN_modulation = nn.Sequential(
act_layer(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True, ),
)
# Zero-initialize the modulation
nn.init.zeros_(self.adaLN_modulation[1].weight)
nn.init.zeros_(self.adaLN_modulation[1].bias)
def forward(
self,
x: torch.Tensor,
y: torch.Tensor,
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
attn_mask: torch.Tensor = None,
):
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
q = self.self_attn_q(norm_x)
q = rearrange(qkv, "B L (H D) -> B L H D", H=self.heads_num)
norm_y = self.norm_y(y)
kv = self.self_attn_kv(norm_y)
k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=2, H=self.heads_num)
# Apply QK-Norm if needed
q = self.self_attn_q_norm(q).to(v)
k = self.self_attn_k_norm(k).to(v)
# Self-Attention
attn = attention(q, k, v, attn_mask=attn_mask)
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
# FFN Layer
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
return x
class IndividualTokenRefiner(nn.Module):
def __init__(
self,
hidden_size,
heads_num,
depth,
mlp_width_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
):
super().__init__()
self.blocks = nn.ModuleList(
[
IndividualTokenRefinerBlock(
hidden_size=hidden_size,
heads_num=heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
)
for _ in range(depth)
]
)
def forward(
self,
x: torch.Tensor,
c: torch.LongTensor,
mask: Optional[torch.Tensor] = None,
):
self_attn_mask = None
if mask is not None:
batch_size = mask.shape[0]
seq_len = mask.shape[1]
mask = mask.to(x.device)
# batch_size x 1 x seq_len x seq_len
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(
1, 1, seq_len, 1
)
# batch_size x 1 x seq_len x seq_len
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
# avoids self-attention weight being NaN for padding tokens
self_attn_mask[:, :, :, 0] = True
for block in self.blocks:
x = block(x, c, self_attn_mask)
return x
class SingleTokenRefiner(nn.Module):
"""
A single token refiner block for llm text embedding refine.
"""
def __init__(
self,
in_channels,
hidden_size,
heads_num,
depth,
mlp_width_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
attn_mode: str = "torch",
enable_cls_token: bool = False,
enable_cross_attn: bool = False,
length: int = 29,
):
super().__init__()
self.attn_mode = attn_mode
assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."
self.in_channels = in_channels
self.enable_cross_attn = enable_cross_attn
if self.enable_cross_attn:
self.length = length
self.input_embedder = nn.Linear(
in_channels//length, hidden_size, bias=True,
)
self.kv_embedder = nn.Linear(
in_channels//length*(length-1), hidden_size, bias=True,
)
self.fusion = CrossTokenRefinerBlock(
hidden_size=hidden_size,
heads_num=heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
)
else:
self.input_embedder = nn.Linear(
in_channels, hidden_size, bias=True,
)
act_layer = get_activation_layer(act_type)
# Build timestep embedding layer
# self.t_embedder = TimestepEmbedder(hidden_size, act_layer,)
# Build context embedding layer
self.c_embedder = TextProjection(
in_channels, hidden_size, act_layer,
)
self.individual_token_refiner = IndividualTokenRefiner(
hidden_size=hidden_size,
heads_num=heads_num,
depth=depth,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
)
self.enable_cls_token = enable_cls_token
if self.enable_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
nn.init.normal_(self.cls_token, std=1e-6)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.LongTensor] = None,
):
if mask is None:
context_aware_representations = x.mean(dim=1)
else:
mask_float = mask.float().unsqueeze(-1) # [b, s1, 1]
context_aware_representations = (x * mask_float).sum(
dim=1
) / mask_float.sum(dim=1)
c = self.c_embedder(context_aware_representations)
if self.enable_cross_attn:
single_channels = self.in_channels // self.length
x, y = torch.split(x, [single_channels, single_channels*(self.length-1)], dim=-1)
x = self.input_embedder(x)
y = self.kv_embedder(y)
else:
x = self.input_embedder(x)
if self.enable_cls_token:
B, L, C = x.shape
x = torch.cat([self.cls_token.expand(B, -1, -1), x], dim=1)
if self.enable_cross_attn:
x = self.fusion(x, y, c)
x = self.individual_token_refiner(x, c, mask)
if self.enable_cls_token:
x_global = x[:, 0]
x = x[:, 1:]
else:
x_global = x.mean(dim=1)
return dict(
txt_fea=x,
txt_fea_avg=x_global
)
__all__ = ["YakModel"]
@dataclass
class VisualGeneratorOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
class YakTransformer(nn.Module):
def __init__(self, config: YakConfig):
super().__init__()
self.config = config
self.in_channels = config.in_channels
self.out_channels = config.out_channels
if config.hidden_size % config.num_heads != 0:
raise ValueError(
f"Hidden size {config.hidden_size} must be divisible by num_heads {config.num_heads}"
)
pe_dim = config.hidden_size // config.num_heads
if sum(config.axes_dim) != pe_dim:
raise ValueError(f"Got {config.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = config.hidden_size
self.num_heads = config.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=config.theta, axes_dim=config.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(config.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if config.guidance_embed else nn.Identity()
)
self.txt_type = config.txt_type
self.txt_in = SingleTokenRefiner(
config.context_in_dim,
self.hidden_size,
heads_num=config.num_heads * 2,
depth=2,
enable_cls_token=True
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamXBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=config.mlp_ratio,
qkv_bias=config.qkv_bias,
)
for _ in range(config.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=config.mlp_ratio)
for _ in range(config.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
self.gradient_checkpointing = False
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
guidance: Tensor | None = None,
cond_img: Tensor = None,
cond_img_ids: Tensor = None,
):
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img_tokens = img.shape[1]
if cond_img is not None:
img = torch.cat([img, cond_img], dim=1)
img_ids = torch.cat([img_ids, cond_img_ids], dim=1)
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.config.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
txt_dict = self.txt_in(txt)
txt = txt_dict["txt_fea"]
y = txt_dict["txt_fea_avg"]
vec = vec + self.vector_in(y)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
if self.training and self.gradient_checkpointing:
img, txt = self._gradient_checkpointing_func(
block.__call__,
img,
txt,
vec,
pe,
)
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
if self.training and self.gradient_checkpointing:
img = self._gradient_checkpointing_func(
block.__call__,
img,
vec,
pe,
)
else:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
if cond_img is not None:
img = torch.split(img, img_tokens, dim=1)[0]
return img
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_noise(
num_samples: int,
channel: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
return torch.randn(
num_samples,
channel,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=device,
dtype=dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
class YakPretrainedModel(PreTrainedModel):
config_class = YakConfig
base_model_prefix = "yak"
supports_gradient_checkpointing = True
main_input_name = "pixel_values"
_supports_sdpa = True
class YakModel(YakPretrainedModel):
def __init__(self, config: YakConfig):
super().__init__(config)
self.vae = AutoencoderKL.from_config(config.vae_config)
self.backbone = YakTransformer(config)
def get_refiner(self):
return self.backbone.txt_in
def get_cls_refiner(self):
return self.backbone.vector_in
def get_backbone(self):
return self.backbone
def get_vae(self):
return self.vae
def preprocess_image(self, image: Image.Image, size, convert_to_rgb=True, Norm=True, output_type="tensor"):
image = exif_transpose(image)
if not image.mode == "RGB" and convert_to_rgb:
image = image.convert("RGB")
image = torchvision.transforms.functional.resize(
image, size, interpolation=transforms.InterpolationMode.BICUBIC
)
arr = np.array(image)
h = arr.shape[0]
w = arr.shape[1]
crop_y = (h - size) // 2
crop_x = (w - size) // 2
pil_image = image.crop([crop_x, crop_y, crop_x+size, crop_y+size])
if output_type == "pil_image":
return pil_image
image_np = arr[crop_y : crop_y + size, crop_x : crop_x + size]
hidden_h = h // 16
hidden_w = w // 16
hidden_size = size // 16
img_ids = torch.zeros(hidden_h, hidden_w, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(hidden_h)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(hidden_w)[None, :]
crop_y = (hidden_h - hidden_size) // 2
crop_x = (hidden_w - hidden_size) // 2
img_ids = img_ids[crop_y : crop_y + hidden_size, crop_x : crop_x + hidden_size]
img_ids = rearrange(img_ids, "h w c -> (h w) c")
image_tensor = torchvision.transforms.functional.to_tensor(image_np)
if Norm:
image_tensor = torchvision.transforms.functional.normalize(image_tensor,
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
return pil_image, image_tensor, img_ids
def process_image_aspectratio(self, image, size):
w, h = image.size
t_w, t_h = size
resize_r = max(float(t_w)/w, float(t_h)/h)
resize_size = (int(resize_r * h), int(resize_r * w))
image = torchvision.transforms.functional.resize(
image, resize_size, interpolation=transforms.InterpolationMode.BICUBIC
)
pil_image = torchvision.transforms.functional.center_crop(
image, (t_h, t_w)
)
hidden_h = t_h // 16
hidden_w = t_w // 16
img_ids = torch.zeros(hidden_h, hidden_w, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(hidden_h)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(hidden_w)[None, :]
img_ids = rearrange(img_ids, "h w c -> (h w) c")
image_tensor = torchvision.transforms.functional.to_tensor(pil_image)
image_tensor = torchvision.transforms.functional.normalize(image_tensor,
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
return pil_image, image_tensor, img_ids
def compute_vae_encodings(self, pixel_values, with_ids=True, time=0):
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
pixel_values = pixel_values.to(self.vae.device, dtype=self.vae.dtype)
with torch.no_grad():
model_input = self.vae.encode(pixel_values).latent_dist.sample()
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor is not None:
model_input = model_input - self.vae.config.shift_factor
if hasattr(self.vae.config, 'scaling_factor') and self.vae.config.scaling_factor is not None:
model_input = model_input * self.vae.config.scaling_factor
# patch for transformer
bs, c, h, w = model_input.shape
model_input = rearrange(model_input, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if with_ids:
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids[..., 0] = time
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return model_input, img_ids
else:
return model_input
def generate_image(
self,
cond,
height,
width,
num_steps,
seed,
no_both_cond=None,
no_txt_cond=None,
img_cfg=1.0,
txt_cfg=1.0,
output_type="pil"
):
txt = cond["txt"]
bs = len(txt)
channel = self.vae.config.latent_channels
height = 16 * (height // 16)
width = 16 * (width // 16)
torch_device = next(self.backbone.parameters()).device
x = get_noise(
bs,
channel,
height,
width,
device=torch_device,
dtype=torch.bfloat16,
seed=seed,
)
# prepare inputs
img = x
bs, c, h, w = img.shape
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs).to(img.device)
if "vae_pixel_values" in cond:
img_vae_cond, cond_ids = self.compute_vae_encodings(
pixel_values=cond["vae_pixel_values"], with_ids=True, time=1.0)
cond_ids = cond_ids.to(img.device)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3).to(img.device)
timesteps = self.get_schedule(
num_steps, img.shape[1], shift=self.config.timestep_shift,
base_shift=self.config.base_shift, max_shift=self.config.max_shift)
no_both_txt = no_both_cond["txt"]
if no_txt_cond is not None:
no_txt_txt = no_txt_cond["txt"]
x = self.edit_denoise(img, img_ids,
txt, txt_ids,
no_txt_txt,
no_both_txt,
img_vae_cond, cond_ids.to(img.device),
timesteps=timesteps,
img_cfg=img_cfg, txt_cfg=txt_cfg)
else:
x = self.denoise(img, img_ids, txt, txt_ids,
timesteps=timesteps, cfg=txt_cfg,
neg_txt=no_both_txt)
x = unpack(x.float(), height, width)
with torch.autocast(device_type=torch_device.type, dtype=torch.float32):
if hasattr(self.vae.config, 'scaling_factor') and self.vae.config.scaling_factor is not None:
x = x / self.vae.config.scaling_factor
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor is not None:
x = x + self.vae.config.shift_factor
x = self.vae.decode(x, return_dict=False)[0]
# bring into PIL format and save
x = x.clamp(-1, 1)
x = rearrange(x, "b c h w -> b h w c")
x = (127.5 * (x + 1.0)).cpu().byte().numpy()
if output_type == "np":
return x
images = []
for i in range(bs):
img = Image.fromarray(x[i])
images.append(img)
return images
def get_schedule(self,
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(self,
input_img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
# sampling parameters
timesteps: list[float],
cfg: float = 1.0,
neg_txt = None):
bs = input_img.shape[0]
for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
t_vec = torch.full((bs,), t_curr, dtype=input_img.dtype, device=input_img.device)
txt_ids = torch.zeros(bs, txt.shape[1], 3).to(txt.device)
cond_eps = self.backbone(
img=input_img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
timesteps=t_vec,
)
txt_ids = torch.zeros(bs, neg_txt.shape[1], 3).to(neg_txt.device)
uncond_eps = self.backbone(
img=input_img,
img_ids=img_ids,
txt=neg_txt,
txt_ids=txt_ids,
timesteps=t_vec,
)
pred = uncond_eps + cfg * (cond_eps - uncond_eps)
input_img = input_img + (t_prev - t_curr) * pred
return input_img
def edit_denoise(self,
input_img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
no_txt_txt: Tensor,
no_both_txt: Tensor,
img_cond,
cond_img_ids,
# sampling parameters
timesteps: list[float],
img_cfg: float = 1.0,
txt_cfg: float = 1.0,):
bs = input_img.shape[0]
for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
t_vec = torch.full((bs * 1,), t_curr, dtype=input_img.dtype, device=input_img.device)
txt_ids = torch.zeros(bs, txt.shape[1], 3).to(txt.device)
cond_eps = self.backbone(
img=input_img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
timesteps=t_vec,
cond_img=img_cond,
cond_img_ids=cond_img_ids,
)
txt_ids = torch.zeros(bs, no_both_txt.shape[1], 3).to(no_both_txt.device)
no_both_eps = self.backbone(
img=input_img,
img_ids=img_ids,
txt=no_both_txt,
txt_ids=txt_ids,
timesteps=t_vec,
)
txt_ids = torch.zeros(bs, no_txt_txt.shape[1], 3).to(no_txt_txt.device)
no_txt_eps = self.backbone(
img=input_img,
img_ids=img_ids,
txt=no_txt_txt,
txt_ids=txt_ids,
timesteps=t_vec,
cond_img=img_cond,
cond_img_ids=cond_img_ids,
)
pred = no_both_eps
pred += img_cfg * (no_txt_eps - no_both_eps)
pred += txt_cfg * (cond_eps - no_txt_eps)
input_img = input_img + (t_prev - t_curr) * pred
return input_img
|