File size: 43,322 Bytes
f304131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
import logging
import math
from datetime import datetime
from importlib import import_module
from typing import List, Union, Optional, Dict

import numpy as np
import PIL.Image
import torch
from torch import Tensor
from torch.nn import init
from torch.nn.functional import softmax, gumbel_softmax, pad
from torchvision import transforms
import transformers
from transformers import AutoImageProcessor
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
from transformers.generation.utils import GenerateOutput
from transformers import CLIPImageProcessor

from .modeling_aimv2 import AIMv2Model
from .configuration_ovis_u1 import BaseVisualTokenizerConfig, Aimv2VisualTokenizerConfig
from .configuration_ovis_u1 import OvisU1Config, ConversationFormatter
from .configuration_ovis_u1 import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID, VIDEO_TOKEN_ID

# ----------------------------------------------------------------------
#                            Visual Tokenizer
# ----------------------------------------------------------------------
class BaseVisualTokenizer(PreTrainedModel):
    base_model_prefix = "backbone"
    main_input_name = None
    _image_processor_class = None
    _image_processor_kwargs = {}
    _backbone_class = None

    def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        if kwargs.get('train_from_scratch'):
            # for key in self._image_processor_kwargs.keys():
            #     self._image_processor_kwargs[key] = getattr(self.config, key, self._image_processor_kwargs[key])
            image_processor = self._image_processor_class.from_pretrained(kwargs['backbone_name_or_path'],
                                                                               **self._image_processor_kwargs)

            self.backbone = self._backbone_class.from_pretrained(kwargs['backbone_name_or_path'], **self.config.backbone_kwargs)
            self.config.backbone_config = self.backbone.config

            config = image_processor.to_dict()
            if getattr(self.config, 'image_processor_new_kwargs', None) is not None:
                for key in self.config.image_processor_new_kwargs.keys():
                    config[key] = self.config.image_processor_new_kwargs[key]
            if 'patch_size' not in config:
                assert getattr(self.backbone.config, 'patch_size'), "Patch size must be set."
                config['patch_size'] = self.backbone.config.patch_size
            self.image_processor = self._image_processor_class.from_dict(config)

        else:
            self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
            self.backbone = AutoModel.from_config(self.config.backbone_config)
        head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS)  # reserved tokens for IMAGE_INDICATORS
        self.head = torch.nn.Sequential(
            torch.nn.Linear(
                self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
                bias=False
            ),
            torch.nn.LayerNorm(head_dim)
        )
        assert all((self.image_processor.do_resize,
                    not getattr(self.image_processor, 'do_center_crop', False),
                    self.image_processor.do_rescale,
                    self.image_processor.do_normalize
                    )), f"image_processor `{self.image_processor}` is not supported currently"

    def get_backbone(self):
        return self.backbone

    def get_monitor_tensors(self):
        raise NotImplementedError

    def get_image_processor(self):
        return self.image_processor

    def mock_input(self):
        height, width = self.get_image_size()
        return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))

    def get_head(self):
        return self.head

    def get_image_size(self):
        raise NotImplementedError

    @staticmethod
    def construct_image_placeholders(grid, data_type='image'):
        if data_type == 'image':
            image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
        elif data_type == 'video':
            image_placeholders = [IMAGE_INDICATOR_IDS[2], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[2]]
        else:
            raise TypeError
        
        return image_placeholders

    @staticmethod
    def _partition(img_size, grid):
        w, h = img_size
        row_height = h // grid[0]
        col_width = w // grid[1]

        partition = []
        for row in range(grid[0]):
            for col in range(grid[1]):
                left = col * col_width
                upper = row * row_height
                right = w if col == grid[1] - 1 else (col + 1) * col_width
                lower = h if row == grid[0] - 1 else (row + 1) * row_height
                partition.append((left, upper, right, lower))

        return partition

    @staticmethod
    def get_best_grid(img_size, side, max_partition, covering_threshold):

        def _covering_area(left, upper, right, lower, side):
            w = right - left
            h = lower - upper
            w, h = max(w, h), min(w, h)
            if w > side:
                h = h / w * side
                w = side
            return w * h

        img_area = img_size[0] * img_size[1]

        candidate_grids = []
        for i in range(1, max_partition + 1):
            for j in range(1, max_partition + 1):
                if i * j <= max_partition:
                    candidate_grids.append((i, j))

        all_grids = []
        good_grids = []
        for grid in candidate_grids:
            partition = BaseVisualTokenizer._partition(img_size, grid)
            covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
            assert covering_ratio <= 1.0
            all_grids.append((grid, covering_ratio))
            if covering_ratio > covering_threshold:
                good_grids.append((grid, covering_ratio))

        if len(good_grids) > 0:
            # pick the good partition with minimum #sub_images and break the tie using covering_ratio
            return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
        else:
            # pick the partition with maximum covering_ratio and break the tie using #sub_images
            return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]

    def preprocess_image(self, image: PIL.Image.Image, max_partition=4, covering_threshold=0.9, convert_to_rgb=True):
        def _preprocess(img: PIL.Image.Image, side):
            # first resize and preprocess
            w, h = img.size
            if w == h:
                new_width = new_height = side
            elif w > h:
                new_width = side
                new_height = int(h / w * new_width)
            else:
                new_height = side
                new_width = int(w / h * new_height)
            new_size = dict(height=new_height, width=new_width)
            pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']

            # then pad to square
            square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
            new_height, new_width = pixel_values.shape[2:]
            if new_height == new_width:
                square_values[:, :, :, :] = pixel_values
            elif new_height > new_width:
                from_index = (side - new_width) // 2
                square_values[:, :, :, from_index:from_index + new_width] = pixel_values
            else:
                from_index = (side - new_height) // 2
                square_values[:, :, from_index:from_index + new_height, :] = pixel_values

            return square_values

        if convert_to_rgb and image.mode != 'RGB':
            image = image.convert('RGB')

        sides = self.get_image_size()
        if sides[0] != sides[1]:
            raise ValueError('get_image_size() returns non-square size')
        side = sides[0]
        grid = self.get_best_grid(image.size, side, max_partition, covering_threshold)
        partition = self._partition(image.size, grid)
        crops = [image.crop(p) for p in partition]
        if len(crops) > 1:
            crops.insert(0, image)
        pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
        image_placeholders = self.construct_image_placeholders(grid)
        return pixel_values, image_placeholders

    def get_backbone_layer(self, index):
        if 'aimv2' in self.config.model_type:
            return self.backbone.trunk.blocks[index]
        else:
            return self.backbone.vision_model.encoder.layers[index]

    def tokenize(self, logits):
        def st_argmax(y_soft, dim):  # straight-through softmax
            index = y_soft.max(dim, keepdim=True)[1]
            y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
            ret = y_hard - y_soft.detach() + y_soft
            return ret

        if self.config.tokenize_function == 'softmax':
            tokens = softmax(logits, dim=-1, dtype=torch.float32).to(logits.dtype)
        elif self.config.tokenize_function == 'gumbel_argmax':
            tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
        elif self.config.tokenize_function == 'st_argmax':
            tokens = st_argmax(logits, dim=-1)
        else:
            raise ValueError(
                f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
        return tokens

    def encode(self, pixel_values):
        output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
        features = output.hidden_states[-1]
        if self.config.drop_cls_token:
            features = features[:, 1:, :]

        # merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
        # e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81 for siglip
        if self.config.hidden_stride > 1:
            n, l, d = features.shape  # this `d` maybe different from the above `d
            sqrt_l = int(l ** 0.5)
            assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
            features = features.reshape(n, sqrt_l, sqrt_l, d)
            pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
            features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
            sqrt_l += pl
            features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
                                        sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
            features = features.permute(0, 1, 3, 2, 4, 5)  # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
            features = features.flatten(3)  # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
            features = features.reshape(
                n, -1, self.config.hidden_stride * self.config.hidden_stride * d)

        return features

    def forward(self, pixel_values) -> torch.Tensor:  # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
        features = self.encode(pixel_values)
        logits = self.head(features)
        tokens = self.tokenize(logits)
        # tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
        # which, tokens' shape should become [BatchSize, #Token, VocabSize]
        batch_size, token_len, _ = tokens.shape
        padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
                                     dtype=tokens.dtype,
                                     device=tokens.device,
                                     layout=tokens.layout,
                                     requires_grad=False)
        tokens = torch.cat((tokens, padding_tensor), dim=2)
        return tokens

class Aimv2VisualTokenizer(BaseVisualTokenizer):
    config_class = Aimv2VisualTokenizerConfig
    supports_gradient_checkpointing = True
    _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
    _image_processor_class = CLIPImageProcessor
    _image_processor_kwargs = dict(do_center_crop=False, crop_size={'height': -1, 'width': -1}, size={'shortest_edge':-1})
    _backbone_class = AIMv2Model
    
    # Copied from qwen2_vl
    def smart_resize(self, 
        height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
    ):
        """Rescales the image so that the following conditions are met:

        1. Both dimensions (height and width) are divisible by 'factor'.

        2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

        3. The aspect ratio of the image is maintained as closely as possible.

        """
        
        if height < factor or width < factor:
            print(f"height:{height} or width:{width} must be larger than factor:{factor}")
            if height < width:
                width = round(factor/height*width)
                height = factor
            else:
                height = round(factor/width*height)
                width = factor

        elif max(height, width) / min(height, width) > 200:
            print(
                f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
            )
            if height > width:
                height = 200 * width
            else:
                width = 200 * height

        h_bar = round(height / factor) * factor
        w_bar = round(width / factor) * factor
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = math.floor(height / beta / factor) * factor
            w_bar = math.floor(width / beta / factor) * factor
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = math.ceil(height * beta / factor) * factor
            w_bar = math.ceil(width * beta / factor) * factor
        return h_bar, w_bar

    def get_monitor_tensors(self):
        return dict(
            backbone_bottom=self.backbone.trunk.blocks[0].attn.qkv.weight,
            backbone_top=self.backbone.trunk.blocks[-1].attn.qkv.weight,
            head=self.head[0].weight
        )

    def get_min_image_size(self):
        min_pixels = self.image_processor.min_pixels
        max_pixels = self.image_processor.max_pixels
        height = int(min_pixels**0.5)
        width = int(min_pixels**0.5)
        patch_size = self.image_processor.patch_size
        hidden_stride = self.image_processor.hidden_stride
        height, width = self.smart_resize(height, width, patch_size * hidden_stride, min_pixels, max_pixels)
        return height, width
    
    def get_image_size(self):
        min_pixels = self.image_processor.min_pixels
        max_pixels = self.image_processor.max_pixels
        num_pixels = (min_pixels+max_pixels) / 2
        height = int(num_pixels**0.5)
        width = int(num_pixels**0.5)
        patch_size = self.image_processor.patch_size
        hidden_stride = self.image_processor.hidden_stride
        height, width = self.smart_resize(height, width, patch_size * hidden_stride, min_pixels, max_pixels)
        return height, width

    def get_token_length(self, width: int,
                            height: int, 
                            n_frames: int = 1,
                            num_images: int = 1):
        patch_size = self.image_processor.patch_size
        temporal_patch_size = self.image_processor.temporal_patch_size
        hidden_stride = self.image_processor.hidden_stride
        min_pixels = self.image_processor.min_pixels
        max_pixels = self.image_processor.max_pixels
        
        max_pixels = max_pixels // num_images
        min_pixels = min(max_pixels, min_pixels)
        
        resized_height, resized_width = height, width
        resized_height, resized_width = self.smart_resize(
                    height,
                    width,
                    factor=patch_size * hidden_stride,
                    min_pixels=min_pixels,
                    max_pixels=max_pixels,
                )
       
        if n_frames % temporal_patch_size != 0:
            n_frames = n_frames + temporal_patch_size - 1
        grid_t = n_frames // temporal_patch_size
        grid_h, grid_w = resized_height // patch_size // hidden_stride, resized_width // patch_size // hidden_stride

        return grid_t * grid_w * grid_h

    def mock_input(self):
        height, width = self.get_min_image_size()
        return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))

    def preprocess_image(self, images: Union[PIL.Image.Image, List[PIL.Image.Image]], 
                            convert_to_rgb: Optional[bool] = True, 
                            num_images: Optional[int] = 1,
                            min_pixels: Optional[int] = None, 
                            max_pixels: Optional[int] = None,
                            multimodal_type: Optional[str] = 'single_image'):


        patch_size = self.image_processor.patch_size # 14
        temporal_patch_size = self.image_processor.temporal_patch_size # 1
        hidden_stride = self.image_processor.hidden_stride # 2
        min_pixels = min_pixels or self.image_processor.min_pixels # 200704
        max_pixels = max_pixels or self.image_processor.max_pixels # 3211264
        
        max_pixels = max_pixels // num_images
        min_pixels = min(max_pixels, min_pixels)

        if not isinstance(images, list):
            images = [images]
        if multimodal_type == 'video':
            assert len(images) >= 1
        else:
            assert len(images) == 1
        images = [image.convert("RGB") if convert_to_rgb and image.mode != 'RGB' else image for image in images ]
        # images = [np.array(image) for image in images]
        
        width, height = images[0].size
        resized_height, resized_width = height, width
        processed_images = []
        for image in images:
            resized_height, resized_width = self.smart_resize(
                height,
                width,
                factor=patch_size * hidden_stride,
                min_pixels=min_pixels,
                max_pixels=max_pixels,
            )
            new_size = dict(height=resized_height, width=resized_width)
            image_pt = self.image_processor.preprocess(image, size=new_size, return_tensors="np")['pixel_values'][0]
            
            processed_images.append(image_pt)

        patches = np.array(processed_images)
        # if data_format == ChannelDimension.LAST:
        #     patches = patches.transpose(0, 3, 1, 2)
        if patches.shape[0] % temporal_patch_size != 0:
            repeats = np.repeat(patches[-1][np.newaxis], temporal_patch_size - 1, axis=0)
            patches = np.concatenate([patches, repeats], axis=0)
        channel = patches.shape[1]
        grid_t = patches.shape[0] // temporal_patch_size # 1
        grid_h, grid_w = resized_height // patch_size, resized_width // patch_size # 32, 32
        
        patches = patches.reshape(
            grid_t,
            temporal_patch_size,
            channel,
            grid_h // hidden_stride,
            hidden_stride,
            patch_size,
            grid_w // hidden_stride,
            hidden_stride,
            patch_size,
        )
        patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
        flatten_patches = patches.reshape(
            grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size
        )
        # 1024, 588

        image_placeholders = self.construct_image_placeholders((1, 1), data_type='video' if multimodal_type=='video' else 'image') # [-301, -300, -302, -305]
        
        # print(flatten_patches.shape, len(images))
        return torch.tensor(flatten_patches), torch.tensor([[grid_t, grid_h, grid_w]]), image_placeholders
    
    def encode(self, pixel_values, grid_thws):
        output = self.backbone(pixel_values, grid_thws, output_hidden_states=True, return_dict=True)
        features = output.hidden_states[-1]
        # default: false
        # if self.config.drop_cls_token:
        #     features = features[:, 1:, :]
        
        # refer to qwen2.5-vl patchmerger
        seq_len, _ = features.shape
        features = features.reshape(seq_len//(self.config.hidden_stride ** 2), -1)
        
        return features

    def forward(self, pixel_values, grid_thws) -> torch.Tensor:  # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
        features = self.encode(pixel_values, grid_thws)
        logits = self.head(features)
        tokens = self.tokenize(logits)
        # tokens' shape is [#Token, VocabSize-5], so padding with [#Token, 5], after
        # which, tokens' shape should become [#Token, VocabSize];
        # this is different from original aimv2 which has [BatchSize, #Token, VocabSize-5]
        token_len, _ = tokens.shape
        padding_tensor = torch.zeros(size=(token_len, len(IMAGE_INDICATOR_IDS)),
                                     dtype=tokens.dtype,
                                     device=tokens.device,
                                     layout=tokens.layout,
                                     requires_grad=False)
        tokens = torch.cat((tokens, padding_tensor), dim=1)
        return tokens

AutoModel.register(Aimv2VisualTokenizerConfig, Aimv2VisualTokenizer)




# ----------------------------------------------------------------------
#                           Visual Generator
# ----------------------------------------------------------------------
from .configuration_yak import YakConfig
from .modeling_yak import YakModel
AutoConfig.register("yak", YakConfig)
AutoModel.register(YakConfig, YakModel)



# ----------------------------------------------------------------------
#                               OvisU1
# ----------------------------------------------------------------------
class VisualEmbedding(torch.nn.Embedding):
    def forward(self, visual_tokens: Tensor) -> Tensor:
        if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
            return super().forward(visual_tokens)
        return torch.matmul(visual_tokens, self.weight)

    def reset_parameters(self, mean=0., std=1.) -> None:
        init.normal_(self.weight, mean=mean, std=std)
        self._fill_padding_idx_with_zero()


class OvisU1PreTrainedModel(PreTrainedModel):
    config_class = OvisU1Config
    base_model_prefix = "ovis_u1"


class OvisU1(OvisU1PreTrainedModel):
    
    def __init__(self, config: OvisU1Config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        attn_kwargs = dict()
        if self.config.llm_attn_implementation:
            attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation
        self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
        assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
        self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
        self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
                                                    image_processor_name_or_path=self.config.name_or_path)
        self.visual_generator = AutoModel.from_config(self.config.visual_generator_config)
        self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
                                    device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)

        def _merge_modules(modules_list: tuple):
            merged_modules = []
            for modules in modules_list:
                merged_modules.extend(modules if modules else [])
            return merged_modules

        self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
        self._skip_keys_device_placement = self.llm._skip_keys_device_placement
        self._keep_in_fp32_modules = _merge_modules(
            (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
        self._supports_flash_attn_2 = True
        self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable, self.visual_generator.is_parallelizable))
        self.supports_gradient_checkpointing = all(
            (self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing, self.visual_generator.supports_gradient_checkpointing))
        self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa, self.visual_generator._supports_sdpa))

    def get_text_tokenizer(self):
        return self.text_tokenizer

    def get_visual_tokenizer(self):
        return self.visual_tokenizer
    
    def get_visual_generator(self):
        return self.visual_generator

    def tie_weights(self):
        if not self.config.disable_tie_weight:
            self.get_llm().tie_weights()

    def get_lm_head(self):
        return self.get_llm().get_output_embeddings()

    def get_llm(self):
        return self.llm

    def get_vte(self):
        return self.vte

    def get_wte(self):
        return self.llm.get_input_embeddings()

    def get_conversation_formatter(self) -> ConversationFormatter:
        if getattr(self, 'conversation_formatter', None) is None:
            self.conversation_formatter = getattr(import_module(".configuration_ovis_u1", __package__),
                                                  self.config.conversation_formatter_class)(self.text_tokenizer)
        return self.conversation_formatter

    def merge_multimodal(
            self,
            text_input_ids: torch.Tensor,
            text_attention_masks: torch.Tensor,
            text_labels: Optional[torch.Tensor],
            pixel_values: Optional[torch.Tensor],
            grid_thws: Optional[torch.Tensor],
            left_padding: bool = False
    ):
        input_device = text_input_ids.device
        visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
        visual_indicator_embeds = self.get_vte()(
            torch.tensor(
                list(range(visual_vocab_szie - 5, visual_vocab_szie)),
                dtype=torch.long,
                device=self.get_visual_tokenizer().device
            )
        ).to(device=input_device)

        if self.training:
            # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
            # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
            # (see below in this function); so, the gradient will not be affected.
            num_images = [x.prod() // (self.visual_tokenizer.config.hidden_stride**2) for x in grid_thws]
            
            visual_tokens = self.visual_tokenizer(pixel_values, grid_thws)

            visual_embeds_ = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
                                        split_size_or_sections=num_images, dim=0)
            


            visual_input_ids_ = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
                                           split_size_or_sections=num_images, dim=0)


            visual_labels_ = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
                             visual_input_ids_]

            
            visual_embeds = []
            visual_input_ids = []
            visual_labels = []
            ind = 0
            for text_input_id in text_input_ids:
                image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
                n = len(image_atom_positions)
                if n > 0:
                    visual_embeds.append(visual_embeds_[ind:ind+n])
                    visual_input_ids.append(visual_input_ids_[ind:ind+n])
                    visual_labels.append(visual_labels_[ind:ind+n])
                    ind += n
                else:
                    visual_embeds.append(visual_embeds_[ind:ind+1])
                    visual_input_ids.append(visual_input_ids_[ind:ind+1])
                    visual_labels.append(visual_labels_[ind:ind+1])
                    ind += 1
                

        else:
            # TODO: Not modified yet
            # When inference, sample can include only text with `None` pixel_value
            # num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
            num_images = [x.prod() // (self.visual_tokenizer.config.hidden_stride**2) if x is not None else 0 for x in grid_thws]
            if sum(num_images) > 0:
                visual_tokens = self.visual_tokenizer(pixel_values, grid_thws)
                try:
                    visual_embeds_ = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
                                        split_size_or_sections=num_images, dim=0)
                except Exception as e:
                    print(e)
                    print(pixel_values.shape, grid_thws.shape, visual_tokens.shape, num_images)
            

                visual_input_ids_ = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
                                            split_size_or_sections=num_images, dim=0)


                visual_labels_ = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
                                visual_input_ids_]
                
                visual_embeds = []
                visual_input_ids = []
                visual_labels = []
                ind = 0
                for text_input_id in text_input_ids:
                    image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
                    n = len(image_atom_positions)
                    if n > 0:
                        visual_embeds.append(visual_embeds_[ind:ind+n])
                        visual_input_ids.append(visual_input_ids_[ind:ind+n])
                        visual_labels.append(visual_labels_[ind:ind+n])
                        ind += n
                    else:
                        visual_embeds.append(visual_embeds_[ind:ind+1])
                        visual_input_ids.append(visual_input_ids_[ind:ind+1])
                        visual_labels.append(visual_labels_[ind:ind+1])
                        ind += 1
                        
            else:
                # just placeholders
                visual_embeds = [None] * len(num_images)
                visual_input_ids = [None] * len(num_images)
                visual_labels = [None] * len(num_images)
            
        # just placeholders
        if text_labels is None:
            text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)

        input_embeds = []
        attention_masks = []
        labels = []
        input_img_poss = []
        for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
            text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
        ):
            placeholder_token_mask = torch.lt(text_input_id, 0)
            text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
            for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
                text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
            image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
            if len(image_atom_positions) > 0:
                input_embed_parts = []
                attention_mask_parts = []
                label_parts = []
                input_img_pos_parts = []
                prev_image_atom_position = -1
                for index, image_atom_position in enumerate(image_atom_positions):
                    input_embed_parts.append(
                        text_embed[prev_image_atom_position + 1:image_atom_position, :])
                    label_parts.append(
                        text_label[prev_image_atom_position + 1:image_atom_position])
                    input_img_pos_parts.append(
                        torch.zeros_like(text_label[prev_image_atom_position + 1:image_atom_position])
                    )
                    attention_mask_parts.append(
                        text_attention_mask[prev_image_atom_position + 1:image_atom_position])
                    input_embed_parts.append(visual_embed[index])
                    attention_mask_parts.append(
                        torch.ones_like(visual_label[index], dtype=torch.bool))
                    label_parts.append(visual_label[index])
                    input_img_pos_parts.append(
                        torch.ones_like(visual_label[index])
                    )
                    prev_image_atom_position = image_atom_position
                if prev_image_atom_position + 1 < text_input_id.shape[0]:
                    input_embed_parts.append(
                        text_embed[prev_image_atom_position + 1:, :])
                    attention_mask_parts.append(
                        text_attention_mask[prev_image_atom_position + 1:])
                    label_parts.append(
                        text_label[prev_image_atom_position + 1:])
                    input_img_pos_parts.append(
                        torch.zeros_like(text_label[prev_image_atom_position + 1:])
                    )
                input_embed = torch.cat(input_embed_parts, dim=0)
                attention_mask = torch.cat(attention_mask_parts, dim=0)
                label = torch.cat(label_parts, dim=0)
                input_img_pos = torch.cat(input_img_pos_parts, dim=0)
            else:
                input_embed = text_embed
                attention_mask = text_attention_mask
                label = text_label
                input_img_pos = torch.zeros_like(text_label)
                if self.training:
                    # Make visual_embed & visual_indicator_embeds involved in the backward graph,
                    # to be compatible with deepspeed zero and ddp.
                    input_embed += torch.sum(visual_embed[0] * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
            input_embeds.append(input_embed)
            attention_masks.append(attention_mask)
            labels.append(label)
            input_img_poss.append(input_img_pos)

        batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
        batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
        batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
        batch_input_img_labels = self.pad_truncate_sequence(input_img_poss, batch_first=True, padding_value=0.0, left_padding=left_padding)

        return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask, batch_input_img_labels

    def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
        if left_padding == False:
            pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
            return pad_sequence[:,:self.config.multimodal_max_length]
        else:
            pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
            return pad_sequence[:,-self.config.multimodal_max_length:]

    def preprocess_inputs(
        self,
        text_or_conversations: Union[List[Dict], str],
        images: Optional[Union[List[PIL.Image.Image], List[List[PIL.Image.Image]]]],
        generation_preface='',
        return_labels=False,
        propagate_exception=True,
        frame_selector=None,
        multimodal_type="single_image",
        fix_sample_overall_length_navit=False,
        min_pixels=None,
        max_pixels=None,
        enable_thinking=False
    ):
        # convert text to conversations
        if isinstance(text_or_conversations, str):
            conversations = [{
                "from": "human",
                "value": text_or_conversations
            }]
        elif isinstance(text_or_conversations, list):
            conversations = text_or_conversations
        else:
            raise ValueError(f'[{datetime.now()}] Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
                             f' but got {type(text_or_conversations)}')

        if frame_selector is not None:
            conversations, images = frame_selector(conversations=conversations,frames=images,clear_prompt=True)

        # format conversations
        prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
            conversations, generation_preface=generation_preface, enable_thinking=enable_thinking)

        # place image placeholders
        input_ids = []
        labels = []
        pixel_values = []
        grid_thws = []
        invalidate_label = False
        image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID or v == VIDEO_TOKEN_ID]
        last_image_token_index = -1
        for i in range(len(image_token_indices)):
            head = 0 if i == 0 else image_token_indices[i - 1] + 1
            tail = image_token_indices[i]
            last_image_token_index = tail
            input_ids.extend(raw_input_ids[head:tail])
            labels.extend(raw_labels[head:tail])
            try:
                # currently, do not support multiple videos
                if multimodal_type == "video":
                    image = images
                else:
                    image = images[i]
                raw_pixel_values, image_grid_thws, image_placeholders = self.visual_tokenizer.preprocess_image(
                    image, num_images=len(images) if fix_sample_overall_length_navit else 1, min_pixels=min_pixels, max_pixels=max_pixels,
                    multimodal_type=multimodal_type)
            except Exception as e:
                if propagate_exception:
                    raise e
                logging.exception(e)
                invalidate_label = True
                # raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input() # TODO
                raw_pixel_values, _ = self.visual_tokenizer.mock_input()
                mock_image = transforms.ToPILImage()(raw_pixel_values[0])
                raw_pixel_values, image_grid_thws, image_placeholders = self.visual_tokenizer.preprocess_image(
                            mock_image, min_pixels=min_pixels, max_pixels=max_pixels)
                
            input_ids.extend(image_placeholders)
            labels.extend([IGNORE_ID] * len(image_placeholders))
            pixel_values.append(raw_pixel_values)
            grid_thws.append(image_grid_thws)
        input_ids.extend(raw_input_ids[last_image_token_index + 1:])
        labels.extend(raw_labels[last_image_token_index + 1:])

        # return tensors
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
        pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
        grid_thws = torch.cat(grid_thws, dim=0) if len(grid_thws) > 0 else None

        if return_labels:
            return prompt, input_ids, pixel_values, grid_thws, labels
        else:
            return prompt, input_ids, pixel_values, grid_thws

    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        # assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`'
        _, inputs_embeds, labels, attention_mask, input_img_labels = self.merge_multimodal(
            text_input_ids=inputs,
            text_attention_masks=kwargs.pop('attention_mask'),
            text_labels=None,
            pixel_values=kwargs.pop('pixel_values'),
            grid_thws=kwargs.pop('grid_thws'),
            left_padding=True
        )
        inputs_embeds = inputs_embeds.detach()
        torch.cuda.empty_cache()
        return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)

    def generate_condition(
            self,
            inputs: Optional[torch.Tensor] = None,
            **kwargs,
    ):
        # assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`'
        _, inputs_embeds, labels, attention_mask, input_img_labels = self.merge_multimodal(
            text_input_ids=inputs,
            text_attention_masks=kwargs.pop('attention_mask'),
            text_labels=None,
            pixel_values=kwargs.pop('pixel_values'),
            grid_thws=kwargs.pop('grid_thws'),
            left_padding=True
        )
        inputs_embeds = inputs_embeds.detach()
        torch.cuda.empty_cache()
        device = self.llm.device
        outputs = self.llm(inputs_embeds=inputs_embeds.to(device), 
                            labels=labels.to(device), 
                            attention_mask=attention_mask.to(device), 
                            output_hidden_states=True, 
                            **kwargs)
        semantic_cond_0 = outputs.hidden_states[-1]
        semantic_cond_1 = outputs.hidden_states[-2]
        semantic_cond = torch.cat([semantic_cond_0, semantic_cond_1], dim=-1)
        return dict(
            txt=semantic_cond
        )
    
    def generate_img(
        self,
        inputs: Optional[torch.Tensor] = None,
        cond = None,
        no_both_cond = None,
        no_txt_cond = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        if cond is None:
            cond = self.generate_condition(inputs, **kwargs)
        
        height = kwargs.get('height', 1024)
        width = kwargs.get('width', 1024)
        num_steps = kwargs.get('num_steps', 50)
        seed = kwargs.get('seed', 42)
        img_cfg = kwargs.pop('img_cfg', 1.5)
        txt_cfg = kwargs.pop('txt_cfg', 5)
        yak_output = self.visual_generator.generate_image(
            cond=cond, no_txt_cond=no_txt_cond, no_both_cond=no_both_cond,
            height=height, width=width, 
            num_steps=num_steps, seed=seed, 
            img_cfg=img_cfg, txt_cfg=txt_cfg,
            output_type="pil")
        return yak_output