--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_gerasveikata This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_gerasveikata") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 9 * Number of training documents: 1037
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | vakcinas - nustatyti - pfizer - 2021 - ukrainos | 20 | -1_vakcinas_nustatyti_pfizer_2021 | | 0 | konstitucijai - konstituciniu - nustatyti - respublikos - reikalavimas | 693 | 0_konstitucijai_konstituciniu_nustatyti_respublikos | | 1 | taisykliu - pasitikejimas - reikalauja - iliuzija - galimybiu | 63 | 1_taisykliu_pasitikejimas_reikalauja_iliuzija | | 2 | vakcinavimas - injekcija - susitvarkyti - sertifikatu - virusa | 60 | 2_vakcinavimas_injekcija_susitvarkyti_sertifikatu | | 3 | koronavirusu - virusologijos - laboratorijoje - institutas - ekspertai | 51 | 3_koronavirusu_virusologijos_laboratorijoje_institutas | | 4 | pfizer - vakcinas - fda - 2021 - dokumentu | 50 | 4_pfizer_vakcinas_fda_2021 | | 5 | vaers - omicron - 2021 - nepageidaujami - skaicius | 46 | 5_vaers_omicron_2021_nepageidaujami | | 6 | vakcinacija - израиля - izraeliui - kampanija - issamiai | 28 | 6_vakcinacija_израиля_izraeliui_kampanija | | 7 | virusus - bakterijas - patogenai - imunine - mikroskopa | 26 | 7_virusus_bakterijas_patogenai_imunine |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12