ABDALLALSWAITI commited on
Commit
f3a39d4
·
verified ·
1 Parent(s): 44c3fad

Upload FP8 quantized model

Browse files
Files changed (1) hide show
  1. README.md +37 -1
README.md CHANGED
@@ -19,7 +19,13 @@ base_model:
19
 
20
  # FLUX.1-dev-ControlNet-Union-Pro-2.0 (fp8)
21
 
22
- This repository contains an unified ControlNet for FLUX.1-dev model released by [Shakker Labs](https://huggingface.co/Shakker-Labs). We provide an [online demo](https://huggingface.co/spaces/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro-2.0).
 
 
 
 
 
 
23
 
24
  # Keynotes
25
  In comparison with [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro),
@@ -131,6 +137,36 @@ You can adjust controlnet_conditioning_scale and control_guidance_end for strong
131
  - Pose: use [DWPose](https://github.com/IDEA-Research/DWPose/tree/onnx), controlnet_conditioning_scale=0.9, control_guidance_end=0.65.
132
  - Gray: use cv2.cvtColor, controlnet_conditioning_scale=0.9, control_guidance_end=0.8.
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  # Resources
135
  - [InstantX/FLUX.1-dev-IP-Adapter](https://huggingface.co/InstantX/FLUX.1-dev-IP-Adapter)
136
  - [InstantX/FLUX.1-dev-Controlnet-Canny](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny)
 
19
 
20
  # FLUX.1-dev-ControlNet-Union-Pro-2.0 (fp8)
21
 
22
+ This repository contains an unified ControlNet for FLUX.1-dev model released by [Shakker Labs](https://huggingface.co/Shakker-Labs). This version has been quantized to FP8 format for optimized inference performance. We provide an [online demo](https://huggingface.co/spaces/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro-2.0).
23
+
24
+ # FP8 Quantization
25
+ This model has been quantized from the original BFloat16 format to FP8 format. The benefits include:
26
+ - **Reduced Memory Usage**: Approximately 50% smaller model size compared to BFloat16/FP16
27
+ - **Faster Inference**: Potential speed improvements, especially on hardware with FP8 support
28
+ - **Minimal Quality Loss**: Carefully calibrated quantization process to preserve output quality
29
 
30
  # Keynotes
31
  In comparison with [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro),
 
137
  - Pose: use [DWPose](https://github.com/IDEA-Research/DWPose/tree/onnx), controlnet_conditioning_scale=0.9, control_guidance_end=0.65.
138
  - Gray: use cv2.cvtColor, controlnet_conditioning_scale=0.9, control_guidance_end=0.8.
139
 
140
+ # Using FP8 Model
141
+ This repository includes the FP8 quantized version of the model. To use it, you'll need PyTorch with FP8 support:
142
+
143
+ ```python
144
+ import torch
145
+ from diffusers.utils import load_image
146
+ from diffusers import FluxControlNetPipeline, FluxControlNetModel
147
+
148
+ base_model = 'black-forest-labs/FLUX.1-dev'
149
+ controlnet_model_union_fp8 = 'YOUR_USERNAME/FLUX.1-dev-ControlNet-Union-Pro-2.0-fp8'
150
+
151
+ # Load using FP8 data type
152
+ controlnet = FluxControlNetModel.from_pretrained(controlnet_model_union_fp8, torch_dtype=torch.float8_e4m3fn)
153
+ pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
154
+ pipe.to("cuda")
155
+
156
+ # The rest of the code is the same as with the original model
157
+ ```
158
+
159
+ See `fp8_inference_example.py` for a complete example.
160
+
161
+ # Pushing Model to Hugging Face Hub
162
+ To push your FP8 quantized model to the Hugging Face Hub, use the included script:
163
+
164
+ ```bash
165
+ python push_model_to_hub.py --repo_id "YOUR_USERNAME/FLUX.1-dev-ControlNet-Union-Pro-2.0-fp8"
166
+ ```
167
+
168
+ You will need to have the `huggingface_hub` library installed and be logged in with your Hugging Face credentials.
169
+
170
  # Resources
171
  - [InstantX/FLUX.1-dev-IP-Adapter](https://huggingface.co/InstantX/FLUX.1-dev-IP-Adapter)
172
  - [InstantX/FLUX.1-dev-Controlnet-Canny](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny)