Update assets/evalPytrec.py
Browse files- assets/evalPytrec.py +183 -183
assets/evalPytrec.py
CHANGED
@@ -1,183 +1,183 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
4 |
-
os.environ["HF_HOME"] = "../../cache/hgCache"
|
5 |
-
os.environ["TRANSFORMERS_CACHE"] = "../../cache/transformersCache/"
|
6 |
-
|
7 |
-
import glob
|
8 |
-
import logging
|
9 |
-
import sys
|
10 |
-
from collections import defaultdict
|
11 |
-
|
12 |
-
import numpy as np
|
13 |
-
import pytrec_eval
|
14 |
-
import tqdm, torch
|
15 |
-
import pandas as pd
|
16 |
-
from pylate import models, rank
|
17 |
-
|
18 |
-
|
19 |
-
document_length = 512
|
20 |
-
|
21 |
-
model_name_or_paths = [
|
22 |
-
"9eren99/TrColBERT",
|
23 |
-
"jinaai/jina-colbert-v2",
|
24 |
-
"antoinelouis/colbert-xm",
|
25 |
-
]
|
26 |
-
|
27 |
-
datasetnames = [
|
28 |
-
"fiqa2018",
|
29 |
-
"climatefever",
|
30 |
-
"dbpedia",
|
31 |
-
"fever",
|
32 |
-
"hotpotqa",
|
33 |
-
# "msmarco",
|
34 |
-
"nfcorpus",
|
35 |
-
"nq",
|
36 |
-
"quoraretrieval",
|
37 |
-
"scidocs",
|
38 |
-
"arguana",
|
39 |
-
"scifact",
|
40 |
-
"touche2020",
|
41 |
-
]
|
42 |
-
for datasetname in datasetnames:
|
43 |
-
print("#############", datasetname, "##############")
|
44 |
-
evalResultsDf = None
|
45 |
-
for model_name_or_path in model_name_or_paths:
|
46 |
-
torch.cuda.empty_cache()
|
47 |
-
if "jinaai/jina-colbert-v2" == model_name_or_path:
|
48 |
-
model = models.ColBERT(
|
49 |
-
model_name_or_path=model_name_or_path,
|
50 |
-
query_prefix="[QueryMarker]",
|
51 |
-
document_prefix="[DocumentMarker]",
|
52 |
-
attend_to_expansion_tokens=True,
|
53 |
-
trust_remote_code=True,
|
54 |
-
document_length=document_length,
|
55 |
-
)
|
56 |
-
elif "antoinelouis/colbert-xm" == model_name_or_path:
|
57 |
-
model = models.ColBERT(model_name_or_path="antoinelouis/colbert-xm")
|
58 |
-
language = "tr_TR" # Use a code from https://huggingface.co/facebook/xmod-base#languages
|
59 |
-
|
60 |
-
backbone = model[0].auto_model
|
61 |
-
if backbone.__class__.__name__.lower().startswith("xmod"):
|
62 |
-
backbone.set_default_language(language)
|
63 |
-
else:
|
64 |
-
model = models.ColBERT(
|
65 |
-
model_name_or_path=model_name_or_path,
|
66 |
-
document_length=document_length,
|
67 |
-
attend_to_expansion_tokens=(
|
68 |
-
True if "attend" in model_name_or_path else False
|
69 |
-
),
|
70 |
-
)
|
71 |
-
|
72 |
-
model.eval()
|
73 |
-
model.to("cuda")
|
74 |
-
|
75 |
-
dfDocs = pd.read_parquet(
|
76 |
-
f"datasets/{datasetname}/corpus/train-00000-of-00001.parquet"
|
77 |
-
).dropna()
|
78 |
-
dfQueries = pd.read_parquet(
|
79 |
-
f"datasets/{datasetname}/queries/train-00000-of-00001.parquet"
|
80 |
-
).dropna()
|
81 |
-
|
82 |
-
if "
|
83 |
-
try:
|
84 |
-
model.tokenizer.model_input_names.remove("token_type_ids")
|
85 |
-
except:
|
86 |
-
print(model_name_or_path)
|
87 |
-
dfDocs.TurkishText = dfDocs.TurkishText.apply(
|
88 |
-
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
89 |
-
)
|
90 |
-
dfQueries.TurkishText = dfQueries.TurkishText.apply(
|
91 |
-
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
92 |
-
)
|
93 |
-
|
94 |
-
# Read test queries
|
95 |
-
queries = []
|
96 |
-
documents = []
|
97 |
-
passage_cand = {}
|
98 |
-
relevant_qid = []
|
99 |
-
relevant_docs = defaultdict(lambda: defaultdict(int))
|
100 |
-
|
101 |
-
# read corpus
|
102 |
-
newId2oldId_Docs = {}
|
103 |
-
for i, row in enumerate(dfDocs.values):
|
104 |
-
documents.append(row[2])
|
105 |
-
newId2oldId_Docs[i] = str(row[0])
|
106 |
-
relevant_qid.append(str(row[0]))
|
107 |
-
|
108 |
-
# read queries
|
109 |
-
newId2oldId_Queries = {}
|
110 |
-
for i, row in enumerate(dfQueries.values):
|
111 |
-
queries.append(row[2])
|
112 |
-
newId2oldId_Queries[i] = str(row[0])
|
113 |
-
|
114 |
-
for j, rowDoc in enumerate(dfDocs.values):
|
115 |
-
relevant_docs[str(row[0])][str(rowDoc[0])] = 0
|
116 |
-
|
117 |
-
# read qrels
|
118 |
-
dfQrels = pd.read_parquet(
|
119 |
-
f"datasets/{datasetname}/qrels/train-00000-of-00001.parquet"
|
120 |
-
)
|
121 |
-
for i, row in enumerate(dfQrels.values):
|
122 |
-
relevant_docs[str(row[0])][str(row[1])] = 1
|
123 |
-
|
124 |
-
candidateIds = [[i for i in range(len(documents))]]
|
125 |
-
|
126 |
-
queries_result_list = []
|
127 |
-
run = {}
|
128 |
-
|
129 |
-
documents_embeddings = model.encode(
|
130 |
-
[documents], is_query=False, show_progress_bar=True
|
131 |
-
)
|
132 |
-
|
133 |
-
for i, query in enumerate(tqdm.tqdm(queries)):
|
134 |
-
|
135 |
-
queries_embeddings = model.encode(
|
136 |
-
[query],
|
137 |
-
is_query=True,
|
138 |
-
)
|
139 |
-
|
140 |
-
reranked_documents = rank.rerank(
|
141 |
-
documents_ids=candidateIds,
|
142 |
-
queries_embeddings=queries_embeddings,
|
143 |
-
documents_embeddings=documents_embeddings,
|
144 |
-
)
|
145 |
-
|
146 |
-
run[newId2oldId_Queries[i]] = {}
|
147 |
-
for resDict in reranked_documents[0]:
|
148 |
-
run[newId2oldId_Queries[i]][newId2oldId_Docs[resDict["id"]]] = float(
|
149 |
-
resDict["score"]
|
150 |
-
)
|
151 |
-
|
152 |
-
evaluator = pytrec_eval.RelevanceEvaluator(
|
153 |
-
relevant_docs, pytrec_eval.supported_measures
|
154 |
-
)
|
155 |
-
scores = evaluator.evaluate(run)
|
156 |
-
|
157 |
-
def print_line(measure, scope, value):
|
158 |
-
print("{:25s}{:8s}{:.4f}".format(measure, scope, value))
|
159 |
-
|
160 |
-
for query_id, query_measures in sorted(scores.items()):
|
161 |
-
break
|
162 |
-
for measure, value in sorted(query_measures.items()):
|
163 |
-
print_line(measure, query_id, value)
|
164 |
-
|
165 |
-
# Scope hack: use query_measures of last item in previous loop to
|
166 |
-
# figure out all unique measure names.
|
167 |
-
resultsColumns = ["model name"]
|
168 |
-
resultsRow = [model_name_or_path]
|
169 |
-
for measure in sorted(query_measures.keys()):
|
170 |
-
resultsColumns.append(measure)
|
171 |
-
resultsRow.append(
|
172 |
-
pytrec_eval.compute_aggregated_measure(
|
173 |
-
measure,
|
174 |
-
[query_measures[measure] for query_measures in scores.values()],
|
175 |
-
)
|
176 |
-
)
|
177 |
-
|
178 |
-
if evalResultsDf is None:
|
179 |
-
evalResultsDf = pd.DataFrame(columns=resultsColumns)
|
180 |
-
evalResultsDf.loc[-1] = resultsRow
|
181 |
-
evalResultsDf.index = evalResultsDf.index + 1
|
182 |
-
|
183 |
-
evalResultsDf.to_csv(f"resultsn/{datasetname}.csv", encoding="utf-8")
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
4 |
+
os.environ["HF_HOME"] = "../../cache/hgCache"
|
5 |
+
os.environ["TRANSFORMERS_CACHE"] = "../../cache/transformersCache/"
|
6 |
+
|
7 |
+
import glob
|
8 |
+
import logging
|
9 |
+
import sys
|
10 |
+
from collections import defaultdict
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import pytrec_eval
|
14 |
+
import tqdm, torch
|
15 |
+
import pandas as pd
|
16 |
+
from pylate import models, rank
|
17 |
+
|
18 |
+
|
19 |
+
document_length = 512
|
20 |
+
|
21 |
+
model_name_or_paths = [
|
22 |
+
"9eren99/TrColBERT",
|
23 |
+
"jinaai/jina-colbert-v2",
|
24 |
+
"antoinelouis/colbert-xm",
|
25 |
+
]
|
26 |
+
|
27 |
+
datasetnames = [
|
28 |
+
"fiqa2018",
|
29 |
+
"climatefever",
|
30 |
+
"dbpedia",
|
31 |
+
"fever",
|
32 |
+
"hotpotqa",
|
33 |
+
# "msmarco",
|
34 |
+
"nfcorpus",
|
35 |
+
"nq",
|
36 |
+
"quoraretrieval",
|
37 |
+
"scidocs",
|
38 |
+
"arguana",
|
39 |
+
"scifact",
|
40 |
+
"touche2020",
|
41 |
+
]
|
42 |
+
for datasetname in datasetnames:
|
43 |
+
print("#############", datasetname, "##############")
|
44 |
+
evalResultsDf = None
|
45 |
+
for model_name_or_path in model_name_or_paths:
|
46 |
+
torch.cuda.empty_cache()
|
47 |
+
if "jinaai/jina-colbert-v2" == model_name_or_path:
|
48 |
+
model = models.ColBERT(
|
49 |
+
model_name_or_path=model_name_or_path,
|
50 |
+
query_prefix="[QueryMarker]",
|
51 |
+
document_prefix="[DocumentMarker]",
|
52 |
+
attend_to_expansion_tokens=True,
|
53 |
+
trust_remote_code=True,
|
54 |
+
document_length=document_length,
|
55 |
+
)
|
56 |
+
elif "antoinelouis/colbert-xm" == model_name_or_path:
|
57 |
+
model = models.ColBERT(model_name_or_path="antoinelouis/colbert-xm")
|
58 |
+
language = "tr_TR" # Use a code from https://huggingface.co/facebook/xmod-base#languages
|
59 |
+
|
60 |
+
backbone = model[0].auto_model
|
61 |
+
if backbone.__class__.__name__.lower().startswith("xmod"):
|
62 |
+
backbone.set_default_language(language)
|
63 |
+
else:
|
64 |
+
model = models.ColBERT(
|
65 |
+
model_name_or_path=model_name_or_path,
|
66 |
+
document_length=document_length,
|
67 |
+
attend_to_expansion_tokens=(
|
68 |
+
True if "attend" in model_name_or_path else False
|
69 |
+
),
|
70 |
+
)
|
71 |
+
|
72 |
+
model.eval()
|
73 |
+
model.to("cuda")
|
74 |
+
|
75 |
+
dfDocs = pd.read_parquet(
|
76 |
+
f"datasets/{datasetname}/corpus/train-00000-of-00001.parquet"
|
77 |
+
).dropna()
|
78 |
+
dfQueries = pd.read_parquet(
|
79 |
+
f"datasets/{datasetname}/queries/train-00000-of-00001.parquet"
|
80 |
+
).dropna()
|
81 |
+
|
82 |
+
if "99eren99/TrColBERT" == model_name_or_path:
|
83 |
+
try:
|
84 |
+
model.tokenizer.model_input_names.remove("token_type_ids")
|
85 |
+
except:
|
86 |
+
print(model_name_or_path)
|
87 |
+
dfDocs.TurkishText = dfDocs.TurkishText.apply(
|
88 |
+
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
89 |
+
)
|
90 |
+
dfQueries.TurkishText = dfQueries.TurkishText.apply(
|
91 |
+
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
92 |
+
)
|
93 |
+
|
94 |
+
# Read test queries
|
95 |
+
queries = []
|
96 |
+
documents = []
|
97 |
+
passage_cand = {}
|
98 |
+
relevant_qid = []
|
99 |
+
relevant_docs = defaultdict(lambda: defaultdict(int))
|
100 |
+
|
101 |
+
# read corpus
|
102 |
+
newId2oldId_Docs = {}
|
103 |
+
for i, row in enumerate(dfDocs.values):
|
104 |
+
documents.append(row[2])
|
105 |
+
newId2oldId_Docs[i] = str(row[0])
|
106 |
+
relevant_qid.append(str(row[0]))
|
107 |
+
|
108 |
+
# read queries
|
109 |
+
newId2oldId_Queries = {}
|
110 |
+
for i, row in enumerate(dfQueries.values):
|
111 |
+
queries.append(row[2])
|
112 |
+
newId2oldId_Queries[i] = str(row[0])
|
113 |
+
|
114 |
+
for j, rowDoc in enumerate(dfDocs.values):
|
115 |
+
relevant_docs[str(row[0])][str(rowDoc[0])] = 0
|
116 |
+
|
117 |
+
# read qrels
|
118 |
+
dfQrels = pd.read_parquet(
|
119 |
+
f"datasets/{datasetname}/qrels/train-00000-of-00001.parquet"
|
120 |
+
)
|
121 |
+
for i, row in enumerate(dfQrels.values):
|
122 |
+
relevant_docs[str(row[0])][str(row[1])] = 1
|
123 |
+
|
124 |
+
candidateIds = [[i for i in range(len(documents))]]
|
125 |
+
|
126 |
+
queries_result_list = []
|
127 |
+
run = {}
|
128 |
+
|
129 |
+
documents_embeddings = model.encode(
|
130 |
+
[documents], is_query=False, show_progress_bar=True
|
131 |
+
)
|
132 |
+
|
133 |
+
for i, query in enumerate(tqdm.tqdm(queries)):
|
134 |
+
|
135 |
+
queries_embeddings = model.encode(
|
136 |
+
[query],
|
137 |
+
is_query=True,
|
138 |
+
)
|
139 |
+
|
140 |
+
reranked_documents = rank.rerank(
|
141 |
+
documents_ids=candidateIds,
|
142 |
+
queries_embeddings=queries_embeddings,
|
143 |
+
documents_embeddings=documents_embeddings,
|
144 |
+
)
|
145 |
+
|
146 |
+
run[newId2oldId_Queries[i]] = {}
|
147 |
+
for resDict in reranked_documents[0]:
|
148 |
+
run[newId2oldId_Queries[i]][newId2oldId_Docs[resDict["id"]]] = float(
|
149 |
+
resDict["score"]
|
150 |
+
)
|
151 |
+
|
152 |
+
evaluator = pytrec_eval.RelevanceEvaluator(
|
153 |
+
relevant_docs, pytrec_eval.supported_measures
|
154 |
+
)
|
155 |
+
scores = evaluator.evaluate(run)
|
156 |
+
|
157 |
+
def print_line(measure, scope, value):
|
158 |
+
print("{:25s}{:8s}{:.4f}".format(measure, scope, value))
|
159 |
+
|
160 |
+
for query_id, query_measures in sorted(scores.items()):
|
161 |
+
break
|
162 |
+
for measure, value in sorted(query_measures.items()):
|
163 |
+
print_line(measure, query_id, value)
|
164 |
+
|
165 |
+
# Scope hack: use query_measures of last item in previous loop to
|
166 |
+
# figure out all unique measure names.
|
167 |
+
resultsColumns = ["model name"]
|
168 |
+
resultsRow = [model_name_or_path]
|
169 |
+
for measure in sorted(query_measures.keys()):
|
170 |
+
resultsColumns.append(measure)
|
171 |
+
resultsRow.append(
|
172 |
+
pytrec_eval.compute_aggregated_measure(
|
173 |
+
measure,
|
174 |
+
[query_measures[measure] for query_measures in scores.values()],
|
175 |
+
)
|
176 |
+
)
|
177 |
+
|
178 |
+
if evalResultsDf is None:
|
179 |
+
evalResultsDf = pd.DataFrame(columns=resultsColumns)
|
180 |
+
evalResultsDf.loc[-1] = resultsRow
|
181 |
+
evalResultsDf.index = evalResultsDf.index + 1
|
182 |
+
|
183 |
+
evalResultsDf.to_csv(f"resultsn/{datasetname}.csv", encoding="utf-8")
|