745H1N commited on
Commit
25b7891
·
1 Parent(s): a32523b

Upload best DQN MountainCar-v0 agent (tuned with Optuna).

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
MountainCar-v0-DQN-optuna.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1373a6d044f243dd4b54ed7c524e4c3e3d7f22f36a1faa82a0e9be0ad69c4d23
3
+ size 55802
MountainCar-v0-DQN-optuna/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
MountainCar-v0-DQN-optuna/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7fb43c9a0290>",
8
+ "_build": "<function DQNPolicy._build at 0x7fb43c9a0320>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fb43c9a03b0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7fb43c9a0440>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7fb43c9a04d0>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fb43c9a0560>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fb43c9a05f0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7fb43c987960>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 2
25
+ ],
26
+ "low": "[-1.2 -0.07]",
27
+ "high": "[0.6 0.07]",
28
+ "bounded_below": "[ True True]",
29
+ "bounded_above": "[ True True]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAO9cYQeO4sSVr8Uyjjd62zOotlddrmAdsSZdwNgzGRvD3QDql5HeF7CvDtMH6Ts3nth+nXHpMAHrpr4pkj8hB3r3KHjcDuLQSYRuC85SiY3kpn46ynmfukxr2qnVveqigSd5xdkl/9wLnFej2xOLindFxRr13uHT4/dnQOz8756LLknHVf9LvHmeCKyoA5/+QJ6DqEs+U4u2E3TFphAgap14PqBFz+JbuX5SqBLhs29umg/3lVOJSnBU5MiUi9FS2tUfu7XaBbcmL0rcO2jN4kTdtsAuVYVM6dIBEBuz6HbfU+JxzI84J/PrdmlaZ1SZZGXAABIuD0CV7aYxB5drXehVz+w65FKPgwhuGUjOnOEtvsaeb+KtGzi6dmbygYUYizscAf0WgOWK9skj18cHDWMDXjLg2e9UyPbwND9TbB+TiKI8BCcQejwd8gNcQxeScqW+NxOu8WSTonovdRNxln2/8tlfWi7DMqV+H67zY1VILACIorYoKmEFIuRMbYJOFquHJxgHlR3JGK3VPqu0ZxLU9jqZqK66Q/go9jqin7T82N+leqI+YGfAU8vy0gGkpvTCOzlpXVNAIy1hs4mobqD/OFTkKGbl++9o3VE0f3awFro+jMxdERG/OcBStoMmPXc4FnnQXi0fI+tjUxHRlu1NySqEafNRX6wH6ngooqbSqiGIOeiJ9dmSEYQsVVV152chq+jfi9DHl1m0ew6CUtvFRN/Bg6Mbf64sYoapNAsV0WEYjYTae/nlesaKOBoeg30XdsMYGXI/rSKlzfrB56/N5NboJMUNCq8JUSwXef6GPnmNTNF8u6KFSwpm6E2nFny4fjF03yxz9GjgR84ML9H4fP8M5pMj7eA83ntxdtn8KluIJOfEx7q12XkHcMWlq0xcNWMevale19lScQwjVbBc7R6KCfsZuVQsJpzlgiLYRhsBeMLI1lhtcFwSH1aHw1GhJ6xrhR/K/VIJkLmADp+NVQXLzr5wyEVv5x7IRyFCwRfJPWw0j/oJSdavoW6z5qapGs25sfTtbSJSGOAN9ez3fAYd0fQD+21JjiGvwwh50vNbUe/FeQO45M1U0wojnTXcKT9hZk3n1vLwBgtLPd5NmzChbAm/GFmnKKMmMDLDyb48NRWqAOgPW2+zMb6Aj83unq0+kfPM/jG21FemgUqpypA2dIYIFHPzMGK21zsFZgpiOlAEyEP3JeWHegAAjk1edM16VG6vgDMDzLm1EQwIh0W10g6h4gd7qPBaaSwfvtBjnpEGe9k1HD6gML+fLf7GEjvifPY+euBgJ0NwXjvZIAjreP8KdIi4q8/zJknQaiHNDk5mSL4STPDipBkSCgI7zbqSeuViEJ2tYD7XZy6uMP+Mi0wwXrTDjz+fpq9WOWsa11YceLJG04fw56nlHdyg817Gzv8IR7DEY0rY0GFQkwoqka97eqi77Z8qXnjOzum0RhmPpjlGLaqJojUHe4jTKoGV0RrnMWe6nqU8Qseb0K6qBpylRgZUgKSgS8/XLw29xXeFU4oltdbKsO7C3nzn9lJgJGo7534I5JDOQ0ALvgCw+5QQUhhxy/947OP/A8V6UYPFEH7NSXzcCcMgW1OWCXldUTiWwBJxRUik9cG8nMtNcNzN9brWKE9fz8+9Hyf20YmtmpB0nXrGfNJ1YFY2qpnS0P6onYiJhEHgq7nNWXedgYT12dv6lIjJiuWfWCdNYUrNHsDHsRvMd/9wqQdjIc3+OcApHDlfoOd6XS6N8SiM/qPKjWAlHDgGzcsVqaR0IJoGiaDDIpffCfxjeKDiaZ16p/cgHO1w7GRlQdMN9j/PewkP5pIpY1BSvwCGAWVGk9nDhNNGzUXqWEL8co8t5J4Cb7mrF/njizlTFYcBqdOhGOcB0TaclaWT2XVuTdTRzNJm1BzY+Rmsx2OgRpT0hh3pXVKX5JN1ZmW4WgZXF68KUJnhl8rSP35SVVrl93M8VpLzCQ5WeEK+N09WLJcFqjgMH/v282buiBdcozu2jU3qa43WFctC5skF4Gf9LKJNZUFGsz5EGrT2bUOo9x32swcbeq3hFJUARjoIx3ihPVAXbAeTTAbOTusSSiZKlo4krM/+4qm5aSZG8EgQV+TiNjSD/aqvaZj2kps6gFgnIH7EjX0QQbXwOn5GzoTY5jOxP1HFPUaSSAqHX/rRLhdq66StuXdDvngsH5sA8eku3enzyLk2nN+tc4gWiz/aT8+BIipYH4UjdKlAUjifJFqiVHLp078P9qbyW1Pez35csuJC7hhoV5A0GTQU7s2tNbHU99gmYvowLjKoO0yEvLXBDQUUdINDY5Ujo1n6Bm4PX7P5/lCimNXqhFanPzOS7Sq4Y+o2ZpSQnFSkdzOHOdGRP+3ENdi83IiNWIzoIgH2/YZv58vrEW4zL1QrobKiMFKwn90qI6r/ltc6lAErGPdKqWQ6f44P30+F53yHk6ErOeNlHPL2RV+OhtYBc78xuCmtbw52THQVuC8idnzuFhsHxT+5aaYxtsuuewqsGIgyfq5kMtP3SbGZg/f8VtNn5bHh6Fc3OMJVD0S99hJ/yL+1t0RhE1n9aiEJVLjc0vtzZ6pFtXCYH5JoH6W9dRwwYBG48lv6ThNkxwakyTSUf65tIKoZ6S5D7wgA4Dzwd1wj9PacpjkZxRzinPXEEzR3bQoIfEcSTgUJfs6vy/k82fmphMQw+IjAs0gCeIBPECaABieOQsuIUb2K2baF3JYFvekBrWL7nljar5yP+lDG1MnUZGl4v4MmCqn9PaBtBvKdNl6wwcrt3vPK7V6AcmuE91G1BMXGp162r4Ch8b5/res4xQQyzEX8bV2uj7U+MReA+x53HwoZTTCrxqwpOO539ciDbYA8bV00WTQxyznL1OAsgxYsxADabkxadEa/nhOyge2Lvr0L7SMqdlKCoXdNTL3a0Uzi7tjfYAXTnRjtdp/0De1m7tcXt0ZdHCkQJ+dFNqwL8M+zkQZp/7e2ACqPPYvlBH5F9yxyrKSEzCGvU3vq9makxxLP94VvgQGYrGY94c0G8pqgCh3BRDNKYsie36+CFq8S+DhL4+ilrq9l8VU0/dynqiGdpHz9zCrseGm/TGWaIPBnyTgvVjBsTpIFC7/RKIpSivD9rwxEjbSdaJFS4vI7rcjKbvtf+dStyUGc58QvcUXkDMLdJzEeYPsYKWLK1Umf7bNA5gc+/SFxl4GrUC6xp5UwaAcsx3xC32dtmO+yiPx0HCjvOulBpZdXNLyHFQuMBhcSddIj1w4QtZzvSfGdPaV9ie2YqKsAWgqrr18P2bAfcipa/sWpbzgp8NcQ1LwVweljfkodTPyO7pR0lGKMA3Bvc5RLJHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "n": 3,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 16,
41
+ "num_timesteps": 1984,
42
+ "_total_timesteps": 1970,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1656149906.9586482,
47
+ "learning_rate": 0.0001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAZtbsvhHkx7tmWPy+HIoIucTiDL9TgBw8/lkivy2Pgjs26wm/OWlMuOHz576hym07OFcFv8GCjbtehye/Xfr9OlHIDb88WwE8os/zvntw27vCaOe+78B6uj/BGL8ob7c739YRv/cPhbzbyBS/7M8fvMIm876iFx+8VWL4vid8ETyUdJRiLg=="
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOA1bbpvvpF2LtVR/y+ZbnTOMVUD79Zbyg8HV8jv+peDDsE6Am/wcspuXbP6b6m70w7MjwEv5oEVrtbBii/2fwAO77ND7+NEA084GHwvpkzzrth6+a+fqi5uh0wGr9kCsU7X64Nv7vkhrybSRK/4g02vAUu7r7L8xe8Nu78vt8dFTyUdJRiLg=="
64
+ },
65
+ "_episode_num": 0,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": -0.007106598984771617,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 0,
78
+ "buffer_size": 1000000,
79
+ "batch_size": 64,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.9953347371020993,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fb43c972950>",
91
+ "add": "<function ReplayBuffer.add at 0x7fb43c9729e0>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7fb43c972a70>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fb43c972b00>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc_data object at 0x7fb43c9d2810>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 625,
108
+ "_n_calls": 124,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
+ }
115
+ }
MountainCar-v0-DQN-optuna/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe020dda850f6a616e010422038f51673606a620db1a689b65e1c1f7d1833e55
3
+ size 623
MountainCar-v0-DQN-optuna/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fc989dcd8cdb2bff3de4aa1cf6215d8a90aeb6eafd0e1ebb7eec5315a01c965
3
+ size 40449
MountainCar-v0-DQN-optuna/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
MountainCar-v0-DQN-optuna/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -200.00 +/- 0.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fb43c9a0290>", "_build": "<function DQNPolicy._build at 0x7fb43c9a0320>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fb43c9a03b0>", "forward": "<function DQNPolicy.forward at 0x7fb43c9a0440>", "_predict": "<function DQNPolicy._predict at 0x7fb43c9a04d0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fb43c9a0560>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fb43c9a05f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb43c987960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAO9cYQeO4sSVr8Uyjjd62zOotlddrmAdsSZdwNgzGRvD3QDql5HeF7CvDtMH6Ts3nth+nXHpMAHrpr4pkj8hB3r3KHjcDuLQSYRuC85SiY3kpn46ynmfukxr2qnVveqigSd5xdkl/9wLnFej2xOLindFxRr13uHT4/dnQOz8756LLknHVf9LvHmeCKyoA5/+QJ6DqEs+U4u2E3TFphAgap14PqBFz+JbuX5SqBLhs29umg/3lVOJSnBU5MiUi9FS2tUfu7XaBbcmL0rcO2jN4kTdtsAuVYVM6dIBEBuz6HbfU+JxzI84J/PrdmlaZ1SZZGXAABIuD0CV7aYxB5drXehVz+w65FKPgwhuGUjOnOEtvsaeb+KtGzi6dmbygYUYizscAf0WgOWK9skj18cHDWMDXjLg2e9UyPbwND9TbB+TiKI8BCcQejwd8gNcQxeScqW+NxOu8WSTonovdRNxln2/8tlfWi7DMqV+H67zY1VILACIorYoKmEFIuRMbYJOFquHJxgHlR3JGK3VPqu0ZxLU9jqZqK66Q/go9jqin7T82N+leqI+YGfAU8vy0gGkpvTCOzlpXVNAIy1hs4mobqD/OFTkKGbl++9o3VE0f3awFro+jMxdERG/OcBStoMmPXc4FnnQXi0fI+tjUxHRlu1NySqEafNRX6wH6ngooqbSqiGIOeiJ9dmSEYQsVVV152chq+jfi9DHl1m0ew6CUtvFRN/Bg6Mbf64sYoapNAsV0WEYjYTae/nlesaKOBoeg30XdsMYGXI/rSKlzfrB56/N5NboJMUNCq8JUSwXef6GPnmNTNF8u6KFSwpm6E2nFny4fjF03yxz9GjgR84ML9H4fP8M5pMj7eA83ntxdtn8KluIJOfEx7q12XkHcMWlq0xcNWMevale19lScQwjVbBc7R6KCfsZuVQsJpzlgiLYRhsBeMLI1lhtcFwSH1aHw1GhJ6xrhR/K/VIJkLmADp+NVQXLzr5wyEVv5x7IRyFCwRfJPWw0j/oJSdavoW6z5qapGs25sfTtbSJSGOAN9ez3fAYd0fQD+21JjiGvwwh50vNbUe/FeQO45M1U0wojnTXcKT9hZk3n1vLwBgtLPd5NmzChbAm/GFmnKKMmMDLDyb48NRWqAOgPW2+zMb6Aj83unq0+kfPM/jG21FemgUqpypA2dIYIFHPzMGK21zsFZgpiOlAEyEP3JeWHegAAjk1edM16VG6vgDMDzLm1EQwIh0W10g6h4gd7qPBaaSwfvtBjnpEGe9k1HD6gML+fLf7GEjvifPY+euBgJ0NwXjvZIAjreP8KdIi4q8/zJknQaiHNDk5mSL4STPDipBkSCgI7zbqSeuViEJ2tYD7XZy6uMP+Mi0wwXrTDjz+fpq9WOWsa11YceLJG04fw56nlHdyg817Gzv8IR7DEY0rY0GFQkwoqka97eqi77Z8qXnjOzum0RhmPpjlGLaqJojUHe4jTKoGV0RrnMWe6nqU8Qseb0K6qBpylRgZUgKSgS8/XLw29xXeFU4oltdbKsO7C3nzn9lJgJGo7534I5JDOQ0ALvgCw+5QQUhhxy/947OP/A8V6UYPFEH7NSXzcCcMgW1OWCXldUTiWwBJxRUik9cG8nMtNcNzN9brWKE9fz8+9Hyf20YmtmpB0nXrGfNJ1YFY2qpnS0P6onYiJhEHgq7nNWXedgYT12dv6lIjJiuWfWCdNYUrNHsDHsRvMd/9wqQdjIc3+OcApHDlfoOd6XS6N8SiM/qPKjWAlHDgGzcsVqaR0IJoGiaDDIpffCfxjeKDiaZ16p/cgHO1w7GRlQdMN9j/PewkP5pIpY1BSvwCGAWVGk9nDhNNGzUXqWEL8co8t5J4Cb7mrF/njizlTFYcBqdOhGOcB0TaclaWT2XVuTdTRzNJm1BzY+Rmsx2OgRpT0hh3pXVKX5JN1ZmW4WgZXF68KUJnhl8rSP35SVVrl93M8VpLzCQ5WeEK+N09WLJcFqjgMH/v282buiBdcozu2jU3qa43WFctC5skF4Gf9LKJNZUFGsz5EGrT2bUOo9x32swcbeq3hFJUARjoIx3ihPVAXbAeTTAbOTusSSiZKlo4krM/+4qm5aSZG8EgQV+TiNjSD/aqvaZj2kps6gFgnIH7EjX0QQbXwOn5GzoTY5jOxP1HFPUaSSAqHX/rRLhdq66StuXdDvngsH5sA8eku3enzyLk2nN+tc4gWiz/aT8+BIipYH4UjdKlAUjifJFqiVHLp078P9qbyW1Pez35csuJC7hhoV5A0GTQU7s2tNbHU99gmYvowLjKoO0yEvLXBDQUUdINDY5Ujo1n6Bm4PX7P5/lCimNXqhFanPzOS7Sq4Y+o2ZpSQnFSkdzOHOdGRP+3ENdi83IiNWIzoIgH2/YZv58vrEW4zL1QrobKiMFKwn90qI6r/ltc6lAErGPdKqWQ6f44P30+F53yHk6ErOeNlHPL2RV+OhtYBc78xuCmtbw52THQVuC8idnzuFhsHxT+5aaYxtsuuewqsGIgyfq5kMtP3SbGZg/f8VtNn5bHh6Fc3OMJVD0S99hJ/yL+1t0RhE1n9aiEJVLjc0vtzZ6pFtXCYH5JoH6W9dRwwYBG48lv6ThNkxwakyTSUf65tIKoZ6S5D7wgA4Dzwd1wj9PacpjkZxRzinPXEEzR3bQoIfEcSTgUJfs6vy/k82fmphMQw+IjAs0gCeIBPECaABieOQsuIUb2K2baF3JYFvekBrWL7nljar5yP+lDG1MnUZGl4v4MmCqn9PaBtBvKdNl6wwcrt3vPK7V6AcmuE91G1BMXGp162r4Ch8b5/res4xQQyzEX8bV2uj7U+MReA+x53HwoZTTCrxqwpOO539ciDbYA8bV00WTQxyznL1OAsgxYsxADabkxadEa/nhOyge2Lvr0L7SMqdlKCoXdNTL3a0Uzi7tjfYAXTnRjtdp/0De1m7tcXt0ZdHCkQJ+dFNqwL8M+zkQZp/7e2ACqPPYvlBH5F9yxyrKSEzCGvU3vq9makxxLP94VvgQGYrGY94c0G8pqgCh3BRDNKYsie36+CFq8S+DhL4+ilrq9l8VU0/dynqiGdpHz9zCrseGm/TGWaIPBnyTgvVjBsTpIFC7/RKIpSivD9rwxEjbSdaJFS4vI7rcjKbvtf+dStyUGc58QvcUXkDMLdJzEeYPsYKWLK1Umf7bNA5gc+/SFxl4GrUC6xp5UwaAcsx3xC32dtmO+yiPx0HCjvOulBpZdXNLyHFQuMBhcSddIj1w4QtZzvSfGdPaV9ie2YqKsAWgqrr18P2bAfcipa/sWpbzgp8NcQ1LwVweljfkodTPyO7pR0lGKMA3Bvc5RLJHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1984, "_total_timesteps": 1970, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656149906.9586482, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAZtbsvhHkx7tmWPy+HIoIucTiDL9TgBw8/lkivy2Pgjs26wm/OWlMuOHz576hym07OFcFv8GCjbtehye/Xfr9OlHIDb88WwE8os/zvntw27vCaOe+78B6uj/BGL8ob7c739YRv/cPhbzbyBS/7M8fvMIm876iFx+8VWL4vid8ETyUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOA1bbpvvpF2LtVR/y+ZbnTOMVUD79Zbyg8HV8jv+peDDsE6Am/wcspuXbP6b6m70w7MjwEv5oEVrtbBii/2fwAO77ND7+NEA084GHwvpkzzrth6+a+fqi5uh0wGr9kCsU7X64Nv7vkhrybSRK/4g02vAUu7r7L8xe8Nu78vt8dFTyUdJRiLg=="}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007106598984771617, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "buffer_size": 1000000, "batch_size": 64, "learning_starts": 50000, "tau": 1.0, "gamma": 0.9953347371020993, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fb43c972950>", "add": "<function ReplayBuffer.add at 0x7fb43c9729e0>", "sample": "<function ReplayBuffer.sample at 0x7fb43c972a70>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fb43c972b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb43c9d2810>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 124, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1365291887066273cc4ae9f8485c8e01643e519bc7a8984c43f5bc1dd0298c5e
3
+ size 156553
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-25T09:39:42.908757"}