File size: 1,085 Bytes
0f59a8e
 
1c69346
 
894637b
1c69346
894637b
 
e2c5c27
 
 
0f59a8e
894637b
8ffc415
 
b25ea53
4b05f25
1c69346
4b05f25
0f59a8e
1c69346
0f59a8e
1c69346
0f59a8e
66383fd
0f59a8e
1c69346
0f59a8e
8ffc415
1c69346
fbe0768
 
8ffc415
fbe0768
a2bcfa1
fbe0768
 
 
 
 
e2c5c27
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
library_name: transformers
language:
- en
- ko
pipeline_tag: translation
tags:
- llama-3-ko
license: mit
datasets:
- 4yo1/llama3_enkor_testing_short
---

### Model Card for Model ID
### Model Details

Model Card: LLaMA3-ENG-KO-8B with Fine-Tuning
Model Overview
Model Name: LLaMA3-ENG-KO-8B

Model Type: Transformer-based Language Model

Model Size: 8 billion parameters

by: 4yo1

Languages: English and Korean

### Model Description
LLaMA3-ENG-KO-8B is a language model pre-trained on a diverse corpus of English and Korean texts.
This fine-tuning approach allows the model to adapt to specific tasks or datasets with a minimal number of additional parameters, making it efficient and effective for specialized applications.

### how to use - sample code

```python
from transformers import AutoConfig, AutoModel, AutoTokenizer

config = AutoConfig.from_pretrained("4yo1/llama3-eng-ko-8b")
model = AutoModel.from_pretrained("4yo1/llama3-eng-ko-8b")
tokenizer = AutoTokenizer.from_pretrained("4yo1/llama3-eng-ko-8b")
```
datasets:
- 4yo1/llama3_enkor_testing_short
  
license: mit