16pramodh commited on
Commit
0250ddc
·
verified ·
1 Parent(s): ee59067

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - text-to-sql
6
+ - t5
7
+ - natural-language-processing
8
+ - sql
9
+ license: apache-2.0
10
+ datasets:
11
+ - gretelai/synthetic_text_to_sql
12
+ base_model:
13
+ - Salesforce/codet5-base
14
+ ---
15
+
16
+ # Text-to-SQL T5 Model (`16pramodh/t2s_model`)
17
+
18
+ ## Model Description
19
+ This is a **T5-based text-to-SQL model** trained to convert **natural language questions** into **SQL queries**.
20
+ It works by taking in:
21
+
22
+ natural language query [SEP] table schema
23
+
24
+ and producing a SQL statement based on the provided database schema.
25
+
26
+ The model is based on `T5ForConditionalGeneration` and supports **text2text-generation** via the Hugging Face Inference API.
27
+
28
+ ---
29
+
30
+ ## Intended Use
31
+ - **Input:** English natural language question **plus** the database schema.
32
+ - **Output:** SQL query that can be executed on the described database.
33
+
34
+ ---
35
+
36
+ ## Example
37
+
38
+ **Input:**
39
+ Get the names and emails of all customers who signed up after January 1, 2024 [SEP] CREATE TABLE customers (customer_id INT PRIMARY KEY, name VARCHAR(50), email VARCHAR(100), signup_date DATE);
40
+
41
+ **Output:**
42
+ SELECT name, email FROM customers WHERE signup_date > '2024-01-01';
43
+
44
+ ---
45
+
46
+ ## How to Use
47
+
48
+ ### Hugging Face Inference API
49
+ ```bash
50
+ curl -X POST \
51
+ -H "Authorization: Bearer YOUR_HF_TOKEN" \
52
+ -H "Content-Type: application/json" \
53
+ -d '{"inputs": "Get the names and emails of all customers who signed up after January 1, 2024 [SEP] CREATE TABLE customers (customer_id INT PRIMARY KEY, name VARCHAR(50), email VARCHAR(100), signup_date DATE);"}' \
54
+ https://api-inference.huggingface.co/models/16pramodh/t2s_model
55
+ ```
56
+
57
+ ### Python (Transformers)
58
+ ```
59
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
60
+
61
+ model_name = "16pramodh/t2s_model"
62
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
63
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
64
+
65
+ input_text = "Get the names and emails of all customers who signed up after January 1, 2024 [SEP] CREATE TABLE customers (customer_id INT PRIMARY KEY, name VARCHAR(50), email VARCHAR(100), signup_date DATE);"
66
+ inputs = tokenizer(input_text, return_tensors="pt")
67
+ outputs = model.generate(**inputs)
68
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
69
+ ```
70
+
71
+ ---